3D Animation
Block – I: 3D Modeling

Odisha State Open University
3D Animation

This course has been developed with the support of the Commonwealth of Learning (COL). COL is an intergovernmental organisation created by Commonwealth Heads of Government to promote the development and sharing of open learning and distance education knowledge, resources and technologies.

Odisha State Open University, Sambalpur (OSOU) is the first Open and Distance learning institution in the State of Odisha, where students can pursue their studies through Open and Distance Learning (ODL) methodologies. Degrees, Diplomas, or Certificates awarded by OSOU are treated as equivalent to the degrees, diplomas, or certificates awarded by other national universities in India by the University Grants Commission.

© 2018 by the Commonwealth of Learning and Odisha State Open University. Except where otherwise noted, 3D Animation is made available under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License: https://creativecommons.org/licenses/by-sa/4.0/legalcode

For the avoidance of doubt, by applying this license the Commonwealth of Learning does not waive any privileges or immunities from claims that it may be entitled to assert, nor does the Commonwealth of Learning submit itself to the jurisdiction, courts, legal processes or laws of any jurisdiction. The ideas and opinions expressed in this publication are those of the author/s; they are not necessarily those of Commonwealth of Learning and do not commit the organisation
Acknowledgements

The Odisha State Open University and COL, Canada wishes to thank those Resource Persons below for their contribution to this DMA-04:

Concept / Advisor
Dr. Srikant Mohapatra
Vice- Chancellor
Odisha State Open University, Sambalpur

Course Writer
Praseed Nair
Assistant Professor
School of Communication, Manipal University

Course Editor
S.Anuradha
Bangalore based Freelancer

Video Production
R. Mohana Sundaram
Creative Director
Jai Ram Institute of Visual Academy, Khurda, Odisha
Guest Faculty, National Institute of Fashion Technology (NIFT), Bhubaneswar

Published by :
Dr. Jayanta Kar Sharma
Registrar on behalf of Odisha State Open University, Sambalpur

Contribution of following staff members of Odisha State Open University is acknowledged:
➢ Sambit Mishra
➢ Debidatta Behera
➢ Prashansa Das
➢ Radhakanta Suna
➢ Abhinandan Tripathy

OSOU and COL acknowledge the support extended by Prof. Madhu Parhar, STRIDE, IGNOU, New Delhi in conducting several workshops in the process of preparation of course material for DMA.
# Contents

## Course overview

| Welcome to Introduction to 3D Animation | 5 |
| Introduction to 3D Space in Blender | 5 |
| Introduction to Modelling techniques | 6 |
| Inorganic Modelling | 6 |
| Organic Modelling | 6 |
| Course outcomes | 7 |
| Timeframe | 8 |
| Study skills | 8 |
| Need help? | 8 |
| Assignments | 9 |
| Assessments | 9 |
| Video Resources | 9 |

## Getting around this Course material

| Margin icons | 10 |

## Unit 1

| Introduction to 3D space | 11 |
| Introduction | 11 |
| Outcomes | 12 |
| Introduc | 12 |
| Terminology | 13 |
| Introduction to 3D view | 13 |
| Menus | 14 |
| Tabs | 17 |
| Panels | 18 |
| Viewport Shading | 20 |
| 3D Space Navigation | 21 |
| Transform Manipulators | 24 |
| Basic Transformations | 25 |
| Unit summary | 30 |
| Assessment | 31 |
| Resources | 32 |

## Unit 2

<p>| Introduction to Modelling | 33 |
| Introduction | 33 |</p>
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Modelling ................................................................. 53</td>
</tr>
<tr>
<td>Introduction ........................................................................ 53</td>
</tr>
<tr>
<td>Outcomes ........................................................................... 53</td>
</tr>
<tr>
<td>Terminology ........................................................................ 54</td>
</tr>
<tr>
<td>Introduction to Curves and Surfaces ......................................... 54</td>
</tr>
<tr>
<td>Curves ............................................................................. 54</td>
</tr>
<tr>
<td>NURBS Curves ................................................................... 58</td>
</tr>
<tr>
<td>Editing NURBS Curve ............................................................... 58</td>
</tr>
<tr>
<td>Transform Tools ................................................................ 58</td>
</tr>
<tr>
<td>Smoothing Tool .................................................................. 59</td>
</tr>
<tr>
<td>Mirror Tool ....................................................................... 59</td>
</tr>
<tr>
<td>Joining Curve Segments ........................................................... 60</td>
</tr>
<tr>
<td>Separating Curves ................................................................. 61</td>
</tr>
<tr>
<td>Deleting Elements ................................................................ 61</td>
</tr>
<tr>
<td>Curve Extrusion .................................................................. 62</td>
</tr>
<tr>
<td>Bevel Depth ....................................................................... 63</td>
</tr>
<tr>
<td>Open 2D Curve ..................................................................... 65</td>
</tr>
<tr>
<td>Closed 2D Curve .................................................................. 65</td>
</tr>
<tr>
<td>Advanced Extrusion ................................................................ 66</td>
</tr>
<tr>
<td>Surfaces ............................................................................... 70</td>
</tr>
<tr>
<td>Nurb Surface in Edit Mode ...................................................... 71</td>
</tr>
<tr>
<td>Deleting Elements ................................................................ 75</td>
</tr>
<tr>
<td>Unit summary .......................................................................... 77</td>
</tr>
<tr>
<td>Assignment .......................................................................... 77</td>
</tr>
<tr>
<td>Assessment ........................................................................... 77</td>
</tr>
<tr>
<td>Resources ............................................................................. 78</td>
</tr>
</tbody>
</table>
### Unit 4

- **Organic Modelling** .................................................. 79
- **Introduction** .......................................................... 79
- **Outcomes** ............................................................. 79
- **Terminology** ........................................................... 79
- **Modelling Modes** .................................................. 80
- **Visualization** ........................................................ 81
- **Tool Shelf** ............................................................ 83
- **Properties Region** .................................................. 84
- **Structure** ............................................................... 84
- **Vertices** ................................................................. 85
- **Selection Mode** ...................................................... 88
- **Selection Loops** ..................................................... 89
- **Duplicating / Mesh Editing Tools** .............................. 92
- **Extrude Edges and Vertices Only** ............................... 94
- **Merge Duplicates** ................................................... 98
- **Unit summary** ......................................................... 100
- **Assignment** .......................................................... 100
- **Assessment** ........................................................... 101
- **Resources** ............................................................. 101
Course overview

Welcome to Introduction to 3D Animation

In this block, you are going to study about the 3D Modelling Techniques. Basically 3D Modelling is used for creating 3D model. By using Blender software one can create wonderful model. Blender is the free and Open Source 3D animation software. Blender can be used to create 3D visualizations such as still images, video, and real-time interactive video games. Blender is a fully integrated 3D content creation suite, offering a broad range of essential tools, including Modelling, Rendering, Animation, Video Editing, VFX, Compositing, Texturing, Rigging, many types of Simulations, and Game Creation.

It is a Cross-Platform an OpenGL GUI and runs on Linux, Mac OS, and MS-Windows systems with less memory and disk footprint. Its interface uses OpenGL to provide a consistent experience across all supported hardware and platforms. As this is 3D based software, the navigation and the working pattern are very different unlike any other 2D based software.

Introduction to 3D Space in Blender

This Course will teach you, what is 3D Interface and how to experience the Navigation within the 3D space using different Transformation Tools to manage the work flow and the creation of basic Meshes (objects) in Blender; Create Basic Primitives, Shortcuts and Identify Buttons and Controls; Customize the user interface to limit the tools and option required for the user in Blender; Use Hot keys; Interact with 3D scene using 3D View for a variety of purposes, such as modeling, animation, texture painting, etc.
Introduction to Modelling techniques

This unit will instruct you, what 3D Modeling is and about the important tools, which support the work flow in 3D modeling using various options. You will also learn in detail how to Create, Select, duplicate and mirroring a Single Object; To Create Multiple Objects with Mirror and Duplicate; Create Object with the knowledge of the Pivot; Edit Pivot Point using Snap Tool which gives us more flexibility; Organize 3D Scenes using Layers; Channelize your work flow that helps you to bring down the complexities of the software; and to Load the Objects to layers to ensure an organised way of handling complex scenes.

Inorganic Modelling

Curves and Surfaces are very important for Modeling. They are the types of Blender Objects. They are expressed by mathematical functions rather than a series of points. Using the specific features of both Bezier and NURBs curves, you will create a model in 3D, and explore how they are computed behind the scenes than how they appear from a modeler’s perspective. Curves are 2D objects, and Surfaces are their 3D extension. Note however, that in Blender, you only have NURBS Surfaces, no Bezier. Even though curves and Surfaces share the same object type, they are not the same thing; For example, you cannot have in the same object both curves and Surfaces. In this Unit, you will learn the usage of Curves and Surfaces for modelling and how to Create Objects using Curves and Surfaces in Blender; Edit them using different Modes; Work with Surface modelling and Nurbs modelling; Work effectively with 2D shapes and to Prepare Curve Deformation and Curve Extrusion.

Organic Modelling

This course will guide the creation of a 3D scene using three key components to create the real-time Geometry Modelling in Blender. You will also learn to use the specific features of Blender 3D software, each one of these Primitives can be manipulated to produce an Object. You will create a model in 3D, and explore the
various modelling methods used in the production. There are **three basic methods** that will be used to create a 3D model, and you will understand **how to create a model** using each technique with 3D Mesh / Primitives; Edit them with different Modes; Work with **Mesh Modelling**; Create **Polygon Objects** and to Analyse the Mesh.

This video will provide a brief overview of this course.

<table>
<thead>
<tr>
<th>Topic</th>
<th>YouTube link</th>
<th>QR Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video 1 –Introduction to 3D</td>
<td>[<a href="https://youtu.be/8d49m8P">https://youtu.be/8d49m8P</a> NWs0](<a href="https://youtu.be/8d49m8P">https://youtu.be/8d49m8P</a> NWs0)</td>
<td><img src="https://example.com" alt="QR Code" /></td>
</tr>
<tr>
<td>Video 2 –Introduction to Blender</td>
<td>[<a href="https://youtu.be/RXToUH">https://youtu.be/RXToUH</a> OHDxE](<a href="https://youtu.be/RXToUH">https://youtu.be/RXToUH</a> OHDxE)</td>
<td><img src="https://example.com" alt="QR Code" /></td>
</tr>
<tr>
<td>Video 3 –Polygon Modeling</td>
<td>[<a href="https://youtu.be/9cCgOZI6">https://youtu.be/9cCgOZI6</a> frY](<a href="https://youtu.be/9cCgOZI6">https://youtu.be/9cCgOZI6</a> frY)</td>
<td><img src="https://example.com" alt="QR Code" /></td>
</tr>
</tbody>
</table>

**Course outcomes**

Upon completion of 3D Modelling you will be able to:

- Interface and customize elements as the Info Editor (Top), a large 3D View, Time Line (Bottom), Outliner (Top right), properties Editor (Bottom right etc.
- Use Transformation tools in Blender
- Create Multiple Objects with Mirror and Duplicate
- Working Surface modelling
- Create Polygon Objects
Course overview

Timeframe

This course will be completed within “2” classes.
This course is of “1” credits.
1 Hour of study time is required for this unit.

Study skills

This is a totally practical oriented course.
Hence, you should have access to personal computer or personal laptop
for better understanding of this unit.
Each and every options are explained step by step in the course
material.
Apart from this course material, the learner has to adopt the tendency
of learning from multiple sources i.e.,
- Internet tutorials
- Video tutorials on YouTube
- Collaboration with people working in the industry etc.
Only classroom study will not make you a professional. You have to be
active to grab the opportunity of learning wherever you get a chance.

Need help?

In case of any help needed you can browse the internet sites like
youtube.com for video tutorials about the subject.
Apart from that, you can contact the writer of this course material at
praseed.nair@manipal.edu
Assignments

There will be some assignments at the end of each unit. These assignments are mostly practical based and should be submitted in CD or DVD. Theoretical assignments are to be submitted neatly written on A4 size sheet.

All assignments will be submitted to Regional centre of Odisha State Open University or as directed by Co-ordinator.

All assignment should be unit wise on separate CD/DVDs clearly mentioning course title and unit on Top. Theoretical Assignment will be neatly filed or spiral bind with cover clearly mentioning necessary information of course, student detain on top.

Assessments

There will be few assessment questions for each unit.

All practical assessment will be submitted to OSOU.

Assessment will take place once at the end of each unit.

Learner will be allowed to complete the assessment within stipulated time frame given by the university.

Video Resources

This study material comes with additional online resources in the form of videos. As videos puts in human element to e-learning at the same time demonstrating the concepts visually also improves the overall learning experience.

You can download any QR code reader from Google Play to view the videos embedded in the course or type the URL on a web browser.
Getting around this Course material

Margin icons

While working through this Course material you will notice the frequent use of margin icons. These icons serve to “signpost” a particular piece of text, a new task or change in activity; they have been included to help you to find your way around this Course material.

A complete icon set is shown below. We suggest that you familiarize yourself with the icons and their meaning before starting your study.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Assessment</th>
<th>Assignment</th>
<th>Case study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>Group activity</td>
<td>Help</td>
<td>Note it!</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Reading</td>
<td>Reflection</td>
<td>Study skills</td>
</tr>
<tr>
<td>Summary</td>
<td>Terminology</td>
<td>Time</td>
<td>Tip</td>
</tr>
</tbody>
</table>
Unit-1

Introduction to 3D space

Introduction

Welcome to Blender, the free and Open Source 3D animation suite. Blender can be used to create 3D visualizations such as still images, video, and real-time interactive video games.

Blender is well suited to individuals and small studios that benefit from its unified pipeline and responsive development process.

It is a cross-platform and runs on Linux, macOS, and MS-Windows systems with less memory and disk footprint. Its interface uses OpenGL to provide a consistent experience across all supported hardware and platforms.

Key Features

• Blender is a fully integrated 3D content creation suite, offering a broad range of essential tools, including Modelling, Rendering, Animation, Video Editing, VFX, Compositing, Texturing, Rigging, many types of Simulations, and Game Creation.
• Cross platform, with an OpenGL GUI that is uniform on all major platforms (and customizable with Python scripts).
• High-quality 3D architecture enabling fast and efficient creation work-flow.
• Excellent community support from forums and IRC.
• Small executable size, optionally portable.

Title-Img 1. 1A rendered image being post-processed.
Despite everything Blender can do, it remains a tool. Talented artists do not create masterpieces by pressing buttons or manipulating brushes, however, by learning and practicing subjects such as human anatomy, composition, lighting, animation principles.

3D Content Creation Software such as Blender has the added technical complexity and jargon associated with the underlying technologies. Terms like UV maps, Materials, Shaders, Meshes, and “Sub surf” are the mediums of the digital artist, and understanding them, even broadly, will help you to use Blender to its best. As this is a 3D based software, the navigation and the working pattern are very different unlike any other 2D based software.

In this Unit, you will learn about the Interface of the software.

Outcomes

Upon completion of this unit you will be able to:

- Interface and customize elements as the Info Editor (Top), a large 3D View, TimeLine(Bottom), Outliner (Top right), properties Editor (Bottom right) etc.
- Experience the Navigation within the 3D space using different Transformation tools and the creation of basic meshes (objects) in Blender
- Use Transformation tools in Blender
- Manage Navigation in Space
- Create Basic Primitives
- Work on the Interface
- Create Shortcuts and
- Identify Buttons and Controls
Terminology

**Header:** Header contains various menus and controls based on the current mode.

**Menu:** Menu offers tools to navigate in 3D space.

**Mode:** 3D view has several modes used for editing different kinds of data.

**Viewport shading:** Allows you to change the way objects are displayed in the viewport.

**Transform Manipulator:** These handy selectors allow you to rotate or move objects by grabbing (clicking with your mouse) their controls and moving your mouse in the axis.

**Snap:** Controls the snapping tools that help with transforming and modelling objects.

**Tool Shelf:** Tool shelf is a context-sensitive region containing tools depending on the current mode.

**Properties region:** Properties Region contains properties of the active object and selected objects.

**Grid Floor:** The grey squares forming a floor mark the zero height of the world.

**Orbit:** Rotate the view around the point of interest.

**Roll:** Rotate the viewport camera around its local Z axis in 15° discrete steps.

### Introduction to 3D view

3D View is used to interact with 3D scene for a variety of purposes, such as modeling, animation, texture painting, etc.

### Main Region

One region, which is always visible, is known as the Main Region and is the most prominent part of the editor.
Each editor has a specific purpose, so the main region and the availability of additional regions are different between editors.

**Header**

The header contains various menus and controls based on the current mode.

![3D View header](https://docs.blender.org/manual/en/dev/editors/3dview/introduction.html)

**Source:** blender.org

**Link:** [https://docs.blender.org/manual/en/dev/editors/3dview/introduction.html](https://docs.blender.org/manual/en/dev/editors/3dview/introduction.html)

**Menus**

- **View**
  This menu offers tools to navigate in 3D space.

- **Select**
  Contains tools for selecting objects.

- **Add**
  Gives a list of different objects types that can be added to a scene.

- **Object**
  This menu appears when in Object Mode. It contains tools to edit objects. In edit mode, it will change to the appropriate menu with editing tools.

**Controls**

**Modes**

The 3D view has several modes used for editing different kinds of data:

- **Object Mode**
  The default mode, available for all object types, as it is dedicated to *object data-block editing*. 
Edit Mode
A mode available for all renderable object types, as it is dedicated to their “shape” Object.

Pose Mode
An armature only mode, dedicated to armature posing.

Sculpt Mode
A mesh-only mode, that enables Blender’s mesh 3D-sculpting tool.

Particle Edit
A mesh-only mode, dedicated to particle systems, useful with editable systems (hair).

Arranging the Screen
Blender uses a novel screen-splitting approach to arrange areas. The idea is that you split up the big application window into many number of smaller (but still rectangular) non-overlapping areas. That way, each area is always fully visible, and it is very easy to work in one area and hop over to work in another.

Changing the Size
You can resize areas by dragging their borders with LMB. Simply move your mouse cursor over the border between two areas, until it changes to a double-headed arrow, and then click and drag.

- Splitting and Joining
- Area Split Widget

Title-Img 1. 3. Changing the size

Source- blender.org
Link- https://docs.blender.org/manual/en/dev/interface/window_system/areas.html
In the upper right and lower left corners of an area are the area split widgets, and they look like a little ridged thumb grip. It both splits and combines areas. When you hover over it, your cursor will change to a cross (+). (Refer Img 1.3)

LMB and drag it inward split the area. You define the direction of that border by either dragging horizontally or vertically.

In order to join two areas LMB click and drag the area splitter outward. They must be the same dimension (width or height) in the direction you wish to join. This is so that the combined area space results in a rectangle.

The area that was closed gets a dark overlaid with an arrow. Now you can select the area to be closed by moving the mouse over it.

Release the LMB to complete the join. If you press Esc or RMB before releasing the mouse, the operation will be aborted.

**Area Options**

RMB on the border opens the Area Options.

**Split Area**

Shows an indicator line that lets you select the area and position where to split. Tab switches between vertical/horizontal.

**Join Areas**

Shows the join direction overlay.

Confirm or cancel works as described above.
Toggle Maximize Area

- **Menu:** View • Toggle Maximize Area
- **Hotkey:** Ctrl-Up, Shift-Spacebar

The maximized area fills the whole application window. It contains the Info Editor and the select area.

You can maximize an area with the **View • Toggle Maximize Area** menu entry. To return to normal size use again menu entry, or RMB on the editor’s header and select **Maximize Area** and **Tiled Area** to return. In the Info Editor header, the Back to Previous button on the right of the menus also returns to tiled areas.

A quicker way to achieve this is to use the shortcuts: **Shift-Spacebar**, **Ctrl-Down** or **Ctrl-Up** to toggle between maximized and normal areas.

Tabs & Panels

**Tabs**

Tabs are **overlapping sections** in the user-interface. The **Tabs header** can be vertical (Tool Shelf) or horizontal (Properties Editor, User Preferences).

Vertical tabs can be switched with the **Wheel** within the tab header and **Ctrl-Wheel** changes tabs from anywhere in the region.

![Image of tabs](Title-Img 1. 4Tools tab (selected), Create, etc)
Panels

The smallest organizational Unit in the user interface is a Panel. Panels can be collapsed to hide its contents. They are used in the Properties Editor, but also for example in the Tool Shelf and the Properties region.

In the image on the right there are three panels:

1. Transform
2. Edit
3. History

The Edit panel is expanded and the other two panels are collapsed.
Link:
https://docs.blender.org/manual/en/dev/interface/window_system/tabs_panels.html

Collapsing and expanding

A triangle on the left of the title shows the expanded (▼) and collapsed (►) state of the panel.

- A click with the LMB on the panel header expands or collapses it.
- Pressing A expand/collapses the panel under the mouse pointer.
- A Ctrl-LMB click on the header of a specific panel will collapse all other panels and make this the only expanded one.
- Dragging with LMB over the headers will expand or collapse many at once.

Panel Position

You can change the position of a panel within its region by clicking and dragging it with the LMB on the grip widget (::::) in the upper right corner.

Pinned Panel

Often it is desirable to view panels from different tabs at the same time. This has been solved by making panels pinnable.

A pinned panel remains visible regardless of which tab has been selected. You can pin a panel by Shift clicking its header, or by RMB clicking on the header and choosing Pin in the context menu.

In the image shown to the right, is an example of the Mesh Options pinned in the tools tab.

Zoom

The zoom factor of a whole region with panels can be changed by Ctrl-MMB clicking and moving the mouse anywhere within that region or use the Numpad Plus and Numpad Minus to zoom in and out the contents. Pressing Home (Show All) will reset the zooming at the screen/panel focused by the mouse pointer.

Alignment

The alignment of the panels in the Properties Editor can be changed between vertical and horizontal. To do this, click with RMB somewhere within the main region of the
Properties Editor and choose either Horizontal or Vertical from the appearing menu. Keep in mind though that the panels are optimized for vertical alignment.

**Viewport Shading**

It allows you to change the way objects are displayed in the Viewport.

**Header: Viewport Shading**

![The Viewport Shading menu](https://docs.blender.org/manual/en/dev/editors/3dview/properties/shading.html)

**Title**-Img 1. The Viewport Shading menu

**Source**- blender.org

**Link**- https://docs.blender.org/manual/en/dev/editors/3dview/properties/shading.html

**Bounding Box**

Only shows rectangular boxes that outline an object’s size and shape.

**Wireframe**

Objects appear as a mesh of lines representing the edges of faces and surfaces.

**Solid**

The default drawing mode using solid coloured surfaces and simple lighting.

**Textured**

Shows meshes with an image applied using the mesh’s active UV Map. For Cycles materials, the image is the last one selected in the Node Editor. For other render engine’s, the UV Map’s applied face texture will be shown.
Material
A fast approximation of the applied material.

Rendered
An accurate representation using the selected Render Engine and lit with the visible scene lights.

Keyboard Shortcuts

Switches between Wireframe and Solid draw modes. Z

Switches between the current and Rendered draw modes. Shift-Z

Switches between Solid and Textured draw modes. Alt-Z

Tip

Except for Rendered, these shading modes are not dependent on light sources in the scene. Instead they use a simple default lighting adjusted by the Solid OpenGL Lights controls on the System tab of the User Preferences editor.

The viewport shading controls the appearance of all objects in a scene, but this can be overridden for individual objects using the Display panel in their Object Properties.

3D Space Navigation

Navigating in 3D space is done with the use of both mouse movement and keyboard shortcuts.

To be able to work in the three-dimensional space that Blender uses, you must be able to change your viewpoint as well as the viewing direction of the scene. While describing 3D View editor, most of the other editors have similar functions. For example, it is possible to translate and zoom in the UV/Image editor.

Orbit

- Mode: All modes
- Menu: View • Navigation • Orbit
- Hotkey: MMB, Numpad2, Numpad4, Numpad6, Numpad8, Ctrl-Alt-Wheel
Rotate the view around the point of interest. Click and drag **MMB** on the viewport’s area. If you start in the middle of the area and move up and down or left and right, the view is rotated around the middle of the area.

To change the viewing angle in discrete steps, use **Numpad8** and **Numpad2** (which correspond to vertical MMB dragging, from any viewpoint), or use **Numpad4** and **Numpad6** (or Ctrl-Alt-Wheel) to rotate the scene around the global Z axis from your current point of view. Finally, **Numpad9** switches to the opposite side of the view.

Alternatively, if the **Emulate 3** button mouse option is select in the User Preferences you can press and hold Alt while dragging **LMB** in the viewport’s area.

**Roll**

- **Mode:** All modes
- **Menu:** View › Navigation › Roll
- **Hotkey:** Shift-Numpad4, Shift-Numpad6, Ctrl-Shift-Wheel

Rotate the viewport camera around its local **Z axis in 15°** discrete steps.

**Panning**

- **Mode:** All modes
- **Menu:** View › Navigation › Pan
- **Hotkey:** Shift-MMB, Ctrl-Numpad2, Ctrl-Numpad4, Ctrl-Numpad6, Ctrl-Numpad8

Move the view up, down, left and right. To pan the view, hold down Shift and drag **MMB** in the 3D View. For discrete steps, use the hotkeys **Ctrl-Numpad8**, **Ctrl-Numpad2**, **Ctrl-Numpad4** and **Ctrl-Numpad6** as with orbiting (note: you can replace Ctrl by Shift).

For those without a middle mouse button, you can hold Shift-Alt while dragging with **LMB**.
3D Animation

Zooming

- **Mode**: All modes
- **Menu**: View • Navigation • Zoom
- **Hotkey**: Ctrl-MMB, Wheel, Numpad Plus, Numpad Minus

Move the camera forwards and backwards. You can zoom in and out by holding down Ctrl and dragging MMB. The hotkeys are Numpad Plus and Numpad Minus. The View • Navigation sub-menu holds these functions too as well. Refer to the 3D View’s View menu image above for more information. If you have a wheel mouse, you can zoom by rotating the Wheel.

**If You Get Lost**

*If you get lost in 3D space, which is common, two hotkeys will help you: Home changes the view so that you can see all objects View • View All, while Numpad Period zooms the view to the currently selected objects when in perspective mode View • View Selected.*

**Zoom Border**

- **Mode**: All modes
- **Menu**: View • Zoom Border
- **Hotkey**: Shift-B

The Zoom Border tool allows you to specify a rectangular region and zoom in so that the region fills the 3D View.

You can access this through the View menu, or the shortcut Shift-B, then LMB click and drag a rectangle to zoom into.

Alternatively you can zoom out using the MMB.

**Dolly Zoom**

- **Mode**: All modes
- **Hotkey**: Ctrl-Shift-MMB
In most cases it is sufficient to zoom the view to get a closer look at something, however, you may notice that at a certain point you cannot zoom any closer.

This is because, Blender stores a view-point that is used for orbiting and zooming. It works well in many cases, however, sometimes you want to move the view-point to a different place. This is what Dolly supports, allowing you to transport the view from one place to another.

You can dolly back and forth by holding down Ctrl-Shift and dragging MMB.

Transform Manipulators

These handy selectors allow you to rotate or move objects by grabbing (clicking with your mouse) their controls and moving your mouse in the axis.

- **Mode:** Object and Edit Modes
- **Menu:** 
- **Hotkey:** Ctrl-Spacebar

The Transformation manipulator widgets allow mouse controlled translation, rotation and scaling in the 3D View. There is a separate manipulator for each operation. Each manipulator can be used separately or in combination with the others.
3D Animation

*Link*:
https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/transform/control/manipulators.html

**Header Controls**

Manipulators can be accessed through the header of the 3D View.

**Axis**
Enable/disable the manipulators Ctrl-Spacebar.

**Manipulators**
Toggles each of the manipulators. Clicking with Shift-LMB on multiple manipulator icons will combine the manipulators.

**Arrow**
Translation.

**Arc**
Rotation.

**Box**
Scale.

**Basic Transformations**

**Grab/Move**

- **Mode**: Object Mode, Edit Mode, and Pose Mode
- **Panel**: Tool Shelf • Tools • Transform • Translate
- **Menu**: Object type • Transform • Grab/Move
- **Hotkey**: G

In Object Mode, the grab/move option lets you translate (move) objects. Translation means changing location of objects. It also lets you translate any elements that make up the object within the 3D space of the active 3D View.

Pressing G activates “Grab/Move” transformation mode. The selected object or element then moves freely according to the mouse pointer’s location and camera.
You can also move an object by clicking and holding RMB on the object to move it. To confirm the action, press LMB.

**Rotate**

- **Mode**: Object and Edit Modes
- **Panel**: Tool Shelf • Tools • Transform • Rotate
- **Menu**: Object/Mesh/Curve/Surface • Transform • Rotate
- **Hotkey**: R

Rotation is also known as a *spin, twist, orbit, pivot, revolve, or roll* and involves changing the orientation of elements (vertices, edge, face, Object etc.) around one or more axes or the Pivot Point

**Scale**

- **Mode**: Object and Edit Modes
- **Panel**: Tool Shelf • Tools • Transform • Scale
- **Menu**: Object/Mesh/Curve/Surface • Transform • Scale
- **Hotkey**: S

Scaling means *changing proportions* of objects. Pressing S will enter the Scale transformation mode where the selected element is scaled inward or outward according to the mouse pointer’s location. The element’s scale will increase as the mouse pointer is moved away from the Pivot Point and decrease as the pointer is moved towards it. If the mouse pointer crosses from the original side of the Pivot Point to the opposite side, the scale will continue in the negative direction and flip the element.

Title-Img 1. 10 Basic scale usage
From left to right, the panels show: the original Object, a scaled down Object, a scaled-up Object and a scale-flipped Object.

Transform Orientations

- **Mode**: Object and Edit Modes
- **Panel**: Properties region ▹ Transform Orientations
- **Hotkey**: Alt-Spacebar

Orientations affect the behaviour of Transformations: **Location, Rotation, and Scale**. You will see an effect on **3D Manipulator** (the widget in the centre of the selection), as well as on transformation constraints (like axis locking). This means that, when you press G-X, it will constrain to the **global X-axis**, but if you press G-X-X it will constrain to your Transform Orientations X-axis.

The Orientations options can be set through the Orientation selector in 3D View header, with **Alt-Spacebar**, or in the Transform Orientations panel in the Properties region.

Orientations

**Global**

The manipulator matches the global axis. When using the Global orientation, the **orientation’s XYZ** matches **world’s XYZ axis**. When this mode is selected, the local coordinates of the object are subjected to the Global coordinates. This is good to place objects in the scene. To constrain an axis,
press G and the desired axis. To constrain to a local axis, press the desired axis two times. The difference between Global and Local, is more noticeable when you have an object in which the origin is not located at the exact centre of the object, and does not match the Global coordinates.

Local
The manipulator matches the object axis.

Notice that, here, the Manipulator is at a slight tilt (it is most visible on the object’s Y-axis, the green arrow). This is due to our 15° rotation of the object. This demonstrates the difference between local coordinates and global coordinates. If we had rotated the object 90° along its X-axis, we would see that the object’s “Up” is the world’s “Forward” – or the object’s Z-axis would now be the world’s Y-axis. This orientation influences many parts of the interface, so it is important to understand the distinction.

Normal
The Z-axis of the manipulator will match the normal vector of the selection.

In Object Mode, this is equivalent to LocalOrientation, in Edit Mode, it becomes more interesting.

As you see, the light blue lines indicate the faces’ normals, and the darker blue lines indicate the vertex normals (these were turned on in the N Properties region under Mesh Display • Normals • Face and Vertex). Selecting any given face will cause our Manipulator’s Z-axis to align with that normal. The same goes for Vertex Select Mode. Edge Select is different – A selected Edge has the Z-axis aligned with it (so you will have to look at the Manipulator widget to determine the direction of X and Y). If you select several elements, it will orient towards the average of those normals.

A notable example of how this is useful is in Vertex Select Mode: Pick a vertex and then do G, Z, Z to tug it away from the mesh and shove it into the mesh. To make this even more useful, select a nearby vertex and press Shift-R to repeat the same movement – except along that second vertex’s normal instead.

Gimbal
Uses a Gimbal behaviour that can be changed depending on the current Rotation Mode.
Creating Basic Primitives

- **Mode**: Object Mode and Edit Mode
- **Panel**: Tool Shelf • Create • Add Primitive/Mesh
- **Menu**: Add • Mesh
- **Hotkey**: Shift-A

A common object type used in a 3D scene is a **Mesh**. Blender comes with several “primitive” mesh shapes that you can start modelling from. You can also add primitives in Edit Mode at the 3D cursor.

If the created object can be removed by hitting **delete key**.

---

**Tip**

- **Undo**
  - **Hotkey**: Ctrl-Z
- **Redo**
  - **Hotkey**: Ctrl-Shift-Z

---

**Title**-

**Img 1. 12 Blender’s standard primitives**

**Source**- blender.org

**Link**-

Unit summary

In this Unit, you have learnt what is 3D Interface and how to

- Work effectively and navigate in 3D space within Blender to manage the work flow
- Customize the user interface to limit the tools and option required for the user in Blender.
- Use Hot keys
- Identify buttons and controls
- Interact with 3D scene using 3D View for a variety of purposes, such as modeling, animation, texture painting, etc.
- Use the Info Editor at the top, a large 3D View, TimeLine at the bottom, Outliner at the top right, properties Editor at the bottom right etc.

After learning this Unit, you can download the Open Source Software available on the internet for free of cost to practice the possibilities of creating 3D Interface.

Assignment

- Create a Dining Table with a table lamp using the basic primitives.
Assessment

- Explain 3D Navigation in Blender.
- Define Primitives.
- Write a brief note on Transform Manipulator.
- Describe the types of Viewport Shading.
- Write a brief note on Track Panel.
- How are the splitting and arranging widgets used?

Fill in the Blanks

1. ______________ allows you to change the way objects are displayed in the viewport.
2. ______________ tool is used to rotate the view around the point of interest.
3. Pressing ______________ expand/collapses the panel under the mouse pointer.
4. In ______________ mode, objects appear as a mesh of lines representing the edges of faces and surfaces.
5. The ______________ short cut can be used to grab and move object.
Resources

While studying this Unit, you can browse the internet links for online tutorials and several books and training DVDs available in the Blender Store and on the Blender Cloud.

- wiki.blender.org
- archive.org
- www.blender.org
- docs.blender.org
Unit 2

Introduction to Modelling

Introduction

In this Unit, you will learn about the important Tools, which support the work flow in Modelling and the many ways of Selecting an Object, Duplicating, Mirroring, etc.

Common use of Mirroring is to model Half an Object, duplicate it and then use the mirror transform to create a reversed version to complete the model.

You will also learn how to organize 3D scenes by using Layers, as it often becomes exponentially more confusing as they grow more complex. Sometimes the artist also needs precise control over how individual Objects are lit, and does not want lights for one Object to affect nearby Objects.

Outcomes

Upon completion of this unit you will be able to:

- Draw with Selection Tools
- Select, duplicate and mirror an Object
- Create Multiple Objects with Mirror and Duplicate
- Edit Pivot Point
- Use Snap Tool
- Organize 3D Scenes using Layers
Terminology

**Active Object:** In Object Mode, the last (de)selected item is called the “Active Object.”

**Point selection:** Selecting the Object in the viewport with a RMB.

**Border select:** With Border Select, you can draw a rectangle while holding down LMB.

**Lasso select:** Lasso select is used to draw a dotted line around the pivot point of the Objects, in Object Mode.

**Circle select:** Circle Select is used to move with dotted circle through Objects with LMB.

**Mirror:** Mirroring an Object or Mesh selection will create a reversed version of the selection.

**Duplicate:** This will create a visually-identical copy of the selected Object(s).

**Edge Ring:** In Edge select mode, holding Ctrl-Alt while selecting an edge selects a sequence of edges that are not connected.

**Selection to grid:** Snaps the currently selected Object(s) to the nearest grid point.

**Cursor to Selected:** Moves the cursor to the centre of the selected Object(s).

**Layers:** Objects can be placed into one or more “layers” using Object layers.

**Cursor to center:** Moves the cursor to the center of the grid.

Work Flow of Modelling

Object Selection

Selections and the Active Object

Blender distinguishes between two different states of selection:
In **Object Mode**, the last (de)selected item is called the “**Active Object**” and is outlined in **yellow** (the others are orange). There is exactly one active Object at any time (even when nothing is selected).

Many actions in Blender use the active Object as a reference (for example linking operations). If you already have a selection and need to make a different Object the active one, simply re-select it with **Shift-RMB**.

All other selected Objects are just selected. You can select **any number** of Objects.

**Point Selection**

- The simplest form of Object selection consists of using **RMB** on it.
- To add to the selection, use **Shift-RMB** on more Objects.
- If the Objects are **overlapping** in the view, you can use **Alt-RMB** to cycle through possible choices.
- If you want to add to a selection this way, then the shortcut becomes **Shift-Alt-RMB**.
- **To activate** an Object that is already selected, click **Shift-RMB** on it.

- To deselect an active Object, click **Shift-RMB** one time and hence, two clicks if the Object is not active. Note that this only works if there are no other Objects under the mouse. Otherwise it just adds those to the selection. There appears to be no workaround for this bug.

**Border Select**

- **Mode**: Object Mode and Edit Mode

- **Menu**: Select ‣ Border Select

- **Hotkey**: B

With Border Select you draw a rectangle while holding down **LMB**. Any Object that lies even partially within this rectangle becomes selected.

- For deselecting Objects, use **MMB** or Border Select again with holding **Shift**.

- To cancel the selection use **RMB**.

**Example**

*Title*-Img 2. 2 Border selecting in three steps

*Source*-Blender.org

*Link*- [http://blender-manual-i18n.readthedocs.io/ja/latest/modeling/objects/selecting.html]

**Border Select** has been activated in the first image and is indicated by showing a **dottedcross-hair cursor**. In the second image, the selection region is being chosen by drawing a **rectangle** with the **LMB**. The rectangle is only covering two cubes. Finally, in the third image, the selection is completed by releasing **LMB**.
Notice in the third image, the bright color of left-most selected cube. This means it is the “Active Object”, the last selected Object prior to using the Border Select tool.

**Lasso Select**

- **Mode**: Object Mode and Edit Mode
- **Menu**: no entry in the menu
- **Hotkey**: Ctrl-LMB

Lasso select is used by **drawing a dotted line** around the pivot point of the Objects, in Object Mode.

**Circle Select**

- **Mode**: Object Mode and Edit Mode
- **Menu**: Select • Circle Select
- **Hotkey**: C

Circle Select is used by moving with **dotted circle** through Objects with LMB. You can select any Object by touching of circle area. It is possible to dynamically change the diameter of circle by scrolling MMB as seen in Img 2.3 and Img 2.4. Deselection is under the same principle - MMB. To cancel the selection use RMB or key Esc.
Menu Selection

The selection methods described above are the most common. There are also many more options accessible through the Select menu of the 3D View.

Select Grouped

- **Mode**: Object Mode
- **Menu**: Select ➤ Grouped
- **Hotkey**: Shift-G

There are two ways to organize the Objects in relation to one another.

1. Parenting
2. Simple grouping

**Select Grouped** uses the Active Object as a base to select all others.
**Mirror Object**

- **Mode**: Object and Edit Modes
- **Menu**: Object/Mesh > Mirror
- **Hotkey**: Ctrl-M

Mirroring an Object or Mesh selection will create a reversed version of the selection. The position of the mirrored version of the selection is determined by the Pivot Point. A common use of mirroring is to model half an Object, duplicate it and then use the mirror transform to create a reversed version to complete the model.
Duplicate Object

This will create a visually-identical copy of the selected Object(s). The copy is created at the same position as the original Object and you are automatically placed in Grab mode.

This copy is a new Object, which shares some data-blocks with the original Object (by default, all the Materials, Textures, and F-Curves), but which has copied others, like the mesh, for example. Therefore, this form of duplication is sometimes called “shallow link”, because not all data-blocks are shared; some of them are “hard copied”!

- Mode: Edit and Object Modes
- Menu: Object › Duplicate
- Hotkey: Shift-D

This will create a visually-identical copy of the selected Object(s). The copy is created at the same position as the original Object and you are automatically placed in Grab mode. See the example below (Img 2.7).

Examples

Title-Img 2. 7 The MeshCone.006 of Object Cone.002 is being edited.

Source-Blender.org
Link-
https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/duplication.html
The mesh’s unique data-block ID name is highlighted in the Outliner.

The cone in the middle has been

1. link duplicated to the left and
2. duplicated to the right.

The duplicated right cone is being edited; the original cone in the middle remains unchanged. The Mesh data has been copied not linked.

Likewise, if the right cone is edited in Object mode, the original cone remains unchanged. The new Objects transform properties or data-block is a copy, not linked.

When the right cone was duplicated, it inherited the material of the middle cone. The material properties were linked, not copied.

Snapping

- **Mode**: Object and Edit Mode
- **Hotkey**: Shift-S

Transform Snapping

![Magnet icon in the 3D View header (red when enabled)](https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/transform/control/snap.html)

The ability to snap Objects and Mesh element to various types of scene elements during a transformation is available by toggling the magnet icon (which will turn red) in the 3D View’s header buttons.

Snap Element

![Snap Element](https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/transform/control/snap.html)
Title-Img 2. 9 Snap Element menu

Source-Blender.org


Volume
Snaps to regions within the volume of the first Object found below the mouse cursor. Unlike the other options, this one controls the depth (i.e. Z-coordinates in current view space) of the transformed element. By toggling the button that appears to the right of the snap target menu (Refer Img 2.10), target Objects will be considered as whole, when determining the volume center.

Face
Snap to the surfaces of faces in Mesh Objects. It is useful for retopologizing the surface of the geometry.

Edge
Snap to edges of Mesh Objects.

Vertex
Snap to vertices of Mesh Objects.

Increment
Snap to grid points. When in Orthographic view, the snapping increment changes depending on zoom level.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Icon" /></td>
<td>Align rotation with the snapping target.</td>
</tr>
<tr>
<td><img src="image2" alt="Icon" /></td>
<td>Project individual elements on the surface of other objects.</td>
</tr>
<tr>
<td><img src="image3" alt="Icon" /></td>
<td>Snaps elements to its own mesh.</td>
</tr>
<tr>
<td><img src="image4" alt="Icon" /></td>
<td>Consider Objects as whole when finding volume center.</td>
</tr>
<tr>
<td><img src="image5" alt="Icon" /></td>
<td>Snap to grid, instead of snapping in increments relative to the current location.</td>
</tr>
</tbody>
</table>

Img 2. 10Various Snap option
Pivot Points

Origin of the 3D model, which is therefore not the physical center of gravity of the Object, but rather the pivot point that will identify the location coordinates of the Object in 3D space, and in toward which operations (such as rotation and scaling of the entire Object) will be carried out, in Object Mode.

- **Mode**: Object Mode and Edit Mode
- **Menu**: Drop list in the header of the 3D View

![Image of Pivot Point modes](https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/transform/control/snap.html)

3D Cursor

- **Mode**: Object Mode and Edit Mode
- **Menu**: Select from the icon in the 3D View header.
- **Hotkey**: .

The 3D cursor is the most intuitive of the pivot points. With the 3D cursor selected as the active pivot point (from either the Editors Header or via.), simply position the 3D cursor and then do the required
transformation. All rotation and scaling transformations will now be done relative to the location of the 3D cursor.

The image below shows the difference when rotating an Object around the median point (left) and around the 3D cursor (right).

Title-Img 2. 12 Rotation around the 3D cursor compared to the median point.

Source-Blender.org

Link-
https://docs.blender.org/manual/en/dev/editors/3dview/object/editing/transform/control/pivot_point/3d_cursor.html

**Individual Origins**

- **Mode**: Object Mode and Edit Mode
- **Menu**: Select from the pivot-icon icon in the 3D View header.
- **Hotkey**: Ctrl-

**In Object Mode**

Title-Img 2. 13 Rotation around individual origins.
The **Origin of an Object** is shown in the 3D View by a **small orange circle**. This is highlighted in the image to the right by the **red arrow**. The origin tells Blender the relative position of that Object in 3D space. What you see in the 3D View (vertices, edges etc.) is what makes up the Object.

While the Origin is equivalent to the center of the Object, it does not have to be located in the center of the Mesh. This means that an Object can have its center located on one end of the Mesh or even completely outside the mesh. For example, the orange rectangle in the image has its Origin located on the far left of the mesh.

Now let us examine: Rotation around the individual origins:

- The **blue rectangle** has its Origin located in the center of the mesh, while the orange rectangle has its Origin located on the left-hand side.

- When the **Pivot Point** is set to Individual Origins, the center of each Object (indicated by the red arrow) remains in place while the Object rotates around it in the path shown by the black arrow.
Working with Layers

3D scenes often become exponentially more confusing as they grow more complex. Sometimes the artist also needs precise control over how individual Objects are lit, and does not want lights for one Object to affect nearby Objects. For this and other reasons below, Objects can be placed into one or more “layers”. Using Object layers, you can:

Selectively display Objects from certain layers in your 3D View, by selecting those layers in the 3D View header. This allows you to speed up interface redrawing, reduce virtual-world clutter, and help improve your workflow.

- **Mode**: Object Mode
- **Panel**: Object ▶ Relations
- **Menu**: Object ▶ Move to Layer...
- **Hotkey**: M

Viewing layers

Blender provides **twenty layers** whose visibility can be toggled with the small unlabelled buttons in the header (Refer Img 2.16, 3D View layer buttons). To select a single layer, click the appropriate button with LMB; to select more than one, use **Shift-LMB** - doing this on an already active layer will deselect it.
To select layers via the keyboard,

- **Step 1**: press 1 to 0 (on the main area of the keyboard) for layers 1 through 10 (the top row of buttons), and
- **Step 2**: Alt-1 to Alt-0 for layers 11 through 20 (the bottom row). Use Shift for multiple (de)selection works for these shortcuts too.

You can select or deselect all Scene Layer buttons at once by pressing \.

**Locking to the scene**

By default, the lock button directly to the right of the layer buttons is enabled. This means that changes to the viewed layers affect all other 3D Views locked to the scene.

**Multiple Layers**

An Object can exist on **multiple layers**. For example, a lamp that only lights Objects on a shared layer could “be” on layers 1, 2, and 3. An Object on layers 3 and 4 would be lit, whereas an Object on layers 4 and 5 would not. There are many places where layer-specific effects come into play, especially lights and particles.

**Moving Objects between layers**

To move selected Objects to a different layer, press M and then select the layer you want from the pop-up menu. Objects can also be on **more**
than one layer at a time. To have an Object on multiple layers, hold Shift while clicking.

![Selection in the Object tab](https://docs.blender.org/manual/en/dev/editors/3dview/object/properties/relations/layers.html)

Another way to view or change a selected Object layer is via the Relations panel, in the Object tab.

![Layers in Object tab, Relations panel.](https://docs.blender.org/manual/en/dev/editors/3dview/object/properties/relations/layers.html)

You will then see the layer buttons in the Relations panel – as before – the Object can be displayed on more than one layer by clicking Shift-LMB.

### Objects in Blender

The geometry of a scene is constructed from one or more Objects. These Objects can range from lamps to light your scene, **basic 2D and 3D shapes** to fill it with models, armatures to animate those models, to cameras to take pictures or video of it all.

**Tip**

*New Objects can be created with Add menu in the 3D Views header.*
Object Types

Mesh
Meshes are Objects composed of Polygonal Faces, Edges and/or Vertices, and can be edited extensively with Blender’s Mesh editing tools.

Curve
Curves are mathematically defined Objects which can be manipulated with control handles or control points (instead of vertices), to manage their length and curvature.

Surface
Surfaces are patches that are also manipulated with control points. These are useful for simple rounded forms and organic landscapes.

Metaball
Meta Objects (or Metaballs) are Objects formed by a mathematical function (with no control points or vertices) defining the 3D volume in which the Object exists. Metal Objects have a liquid-like quality, where when two or more Metaballs are brought together, they merge by smoothly rounding out the connection, appearing as one unified Object.

Text
Text Objects create a two-dimensional representation of a string of characters.

Armature
Armatures are used for rigging 3D models in order to make them poseable and animateable.

Lattice
Lattices are non-renderable wireframes, commonly used for taking additional control over other Objects with help of the Lattice Modifier.

Empty
Empties are null Objects that are simple visual transform nodes that do not render. They are useful for controlling the position or movement of other Objects.

Speaker
Speaker brings to scene source of sound.
Camera
This is the virtual camera that is used to determine what appears in the render.

Lamp
These are used to place light sources in the scene.

Force Field
Force Fields are used in physical simulations. They give simulations external forces, creating movement, and are represented in the 3D View editor as small control Objects.

Group Instance
Let’s you select from a list of existing Object groups. Once selected, an Empty Object will be created, with an instance of the selected group (group duplication active).

Objects
The geometry of a scene is constructed from one or more Objects. These Objects can range from lamps to light your scene, basic 2D and 3D shapes to fill it with models, armatures to animate those models, to cameras to take pictures or video of it all.
**Unit summary**

In this Unit, you have learnt how to

- Work with 3D modelling using various options
- Channelize your work flow that helps you to bring down the complexities of the software.
- Create basic Objects, selection, duplication and mirroring Objects
- Load the Objects to layers to ensure an organised way of handling complex scenes.
- Create Object with the knowledge of the pivot
- Manipulate the pivot using various options to develop more complicated duplication of Objects.
- Arrange the Object precisely using one of the most important features of the software “snap” which gives us more flexibility.

After learning this Unit, you can download the [Open Source Software](https://www.open-source-software.com) available on the internet for free of cost to practice the possibilities of creating 3D Objects.

**Assignment**

- Create “**House model**” with proper interiors using the basic primitives looking at the given image.

*No need to add colors* to the model. (you can do it after learning the texturing unit)The total length of the video should be **2-5 minutes**.
Assessment

1. Explain the various Selection Modes in Blender.
2. Describe the Method of Duplication and Mirror.
3. Describe the Uses of Layers.
4. Why do we need Snap Tool, explain?
5. Write a brief note on the Object Types in Blender.
6. Explain any three types of Snap Options.

Fill in the Blanks

1. In Object Mode, the last (de)selected item is called the ________________.
2. The simplest form of Object Selection consists _______________ of using _______________ on it.
3. The _______________ icon is used to Snap Objects and Mesh element to several types of scene elements.
4. _______________ will identify the location coordinates of the Object in 3D space.
5. Circle Select is used by moving with dotted circle through Objects with _______________.

Resources

While studying this Unit, you can browse the internet links for tutorials and several books and training DVDs available in the Blender Store and on the Blender Cloud.

- wiki.blender.org
- archive.org
- www.blender.org
- docs.blender.org

Study Skills
Unit 3

Inorganic Modelling

Introduction

Curves and Surfaces are very important for Modelling.

Curves and Surfaces are types of Blender Objects. They are expressed by mathematical functions rather than a series of points. Using the specific features of both Bezier and NURBs curves, you will create a model in 3D, and explore how they are computed behind the scenes than how they appear from a modeler’s perspective.

Bezier curves are generally more intuitive because they start and end at the control points that you set, but NURBs curves are more efficient for the computer to calculate when there are many twists and turns in a curve.

Curves are 2D objects, and Surfaces are their 3D extension. Note however, that in Blender, you only have NURBS Surfaces, no Bezier. Even though curves and Surfaces share the same object type, they are not the same thing; For example, you cannot have in the same object both curves and Surfaces.

In this Unit, you will learn the usage of Curves and Surfaces for modelling.

Outcomes

Upon completion of this unit you will be able to:

- Create and work with Curves.
- Edit the Curves using different Modes.
- Working Surface modelling.
- Create Objects using Curves and
- Prepare Curve Deformation and Curve Extrusion.
Terminology

**Bezier Curve**: Adds an open 2D Bezier curve with two control points.

**Bezier Circle**: Adds a closed, circle-shaped 2D Bezier curve (made of four control points).

**NURBS Curve**: It adds an open 2D NURBS curve, with four control.

**NURBS Circle**: It adds a closed, circle-shaped 2D NURBS curve (made of eight control points).

**Path**: It adds a NURBS open 3D curve made of five aligned control points, with Endpoint knots and the Curve Path setting enabled.

**NURBS**: Non-Uniform Rational B-Splines.

**Extrude**: Will extrude the curve along both the positive and negative local Z axes.

**Bevel Depth**: Changes the size of the bevel.

**Subdividing**: Curve subdivision simply subdivides all selected segments by adding one or more control points between the selected segments.

**Duplication**: This command duplicates the selected control points, along with the curve segments implicitly selected (if any).

**Separating Curves**: Curve objects that are made of multiple distinct, curves can be separated into their own objects by selecting the desired segments.

**Fill**: Fill determines the way a Curve is displayed when it is bevelled.

Introduction to Curves and Surfaces

Curves

**Bézier Curves**

The main elements used in editing Bézier Curves are the **Control Points and Handles**.

**Control Points**
A Segment (the actual Curve) is found between two Control Points.

In the image below (Img 3.1), the Control Points can be found in the middle of the pink line while the Handles comprise the extensions from the Control Point.

By default, the arrows on the Segment represent the direction and relative speed and direction of movement Objects will have when moving along the curve. This can be altered by defining a custom F-Curve.

![Bezier Curve in Edit Mode](Image)

**Title-Img 3.1 Bezier Curve in Edit Mode.**

**Source-Blender.org**


### Editing Bézier Curves

A Bézier curve can be edited by moving the locations of the Control Points and Handles:

- **Step 1:** Add a Curve by Shift-A to bring up the Add menu, followed by Curve > Beziers.

- **Step 2:** Press Tab to enter Edit Mode.

- **Step 3:** Select one of the Control Points and move it around. Use LMB to confirm the new location of the Control Point, or use RMB to cancel.

- **Step 4:** Now select one of the Handles and move it around. Notice how this change the curvature of the curve.

**To add more Control Points:**

- **Step 1:** Select at least two adjacent Control Points.
• **Step 2:** Press **W** and select Subdivide.

Optionally, you can press **F6** immediately after the subdivision to modify the number of subdivisions.

> **Tip**
> While in Edit Mode, you cannot directly select a Segment. To do so, select all of the Control Points that make up the Segment you want to move.

### Handles

There are **Four Bézier Curve Handle types**. They can be accessed by pressing **V** and selecting from the list that appears, or by pressing the appropriate **hotkey** combination. Handles can be rotated, moved, scaled and shrunk/fattened like any vertex in a Mesh.

#### Bézier Curve Handle Types

1. **Automatic V-A**

   This handle has a completely automatic length and direction which is set by Blender to ensure the **smoothest result**. These handles convert to **Aligned handles** when moved.

   ![Img 3. 2 Bezier handle type.](Title-img)

2. **Vector V-V**

   Both parts of a handle always point to the previous handle or the next handle which allows you to create curves or sections thereof made of straight lines or with sharp corners. Vector handles convert to **free handles** when moved.

**Source**

Title-Img 3. 3 Bezier handle type.

Source-Blender.org

3. Aligned V-L

These handles always lie in a **straight line**, and give a continuous curve without sharp angles.

Title-Img 3. 4 Bezier handle type.

Source-Blender.org

4. Free V-F

The handles are **independent** of each other.

Title-Img 3. 5 Bezier handle type.

Source-Blender.org

Additionally, the **V-T shortcut** can be used to toggle between Free and Aligned handle types.
NURBS Curves

One of the major differences between Bézier Objects and NURBS Objects is that Bézier Curves are approximations.

For example, a Bézier circle **approximates a circle**, whereas a NURBS circle is an **exact circle**. In practice, many of the Bézier curve operations discussed above apply to NURBS curves in the same manner. The following text will concentrate only on those aspects that are unique to NURBS curves.

Editing NURBS Curve

A NURBS Curve is edited by moving the location of the Control Points:

- **Step 1:** Place a Curve by **Shift-A** to bring up the Add menu, followed by Curve » NURBS curve.

- **Step 2:** Press Tab to enter Edit Mode.

- **Step 3:** Select one of the Control Points and move it around. Use LMB to confirm the new location of the Control Point, or use RMB to cancel.

To add additional Control Points

- **Step 1:** select both the Control Points

- **Step 2:** press **W** and

- **Step 3:** select Subdivide.

- **Step 4:** Press **F6** immediately after to determine how many subdivisions to make.

Transform Tools

**Deforming Tool**

- **Mode:** Edit Mode

- **Menu:** Curve » Transform

The **Shear, Warp and Push/Pull transform tools** are described in the Transformations sections. The two other tools, **Tilt and Shrink/Fatten Radius** are related to **Curve Extrusion**.
**Smoothing Tool**

- **Mode:** Edit Mode
- **Hotkey:** W • smooth

Curves smoothing is available through the specials menu. For Bézier curves, this smoothing operation reduces the distance between the selected control point/s and their neighbors, while keeping the neighbors anchored. Does not affect control point tangents.

**Mirror Tool**

- **Mode:** Edit Mode
- **Menu:** Curve • Mirror
- **Hotkey:** Ctrl-M

The Mirror tool is also available, behaving exactly as with Mesh vertices.

**Set Bézier Handle Type**

- **Mode:** Edit Mode
- **Panel:** Curve Tools • Handles
- **Menu:** Curve • Control Points • Set Handle Type
- **Hotkey:** V

Handle types are a property of Bézier curves that can be used to alter features of the curve. For example, switching to Vector handles can be used to create curves with sharp corners. Read the Bézier curves page for more details.

**Extending Curves**

- **Mode:** Edit Mode
- **Menu:** Curve • Extrude
- **Hotkey:** Ctrl-LMB, E
Once a curve is created you can add **new segments** (in fact, new control points defining new segments), either by extruding, or placing new handles with **Ctrl-LMB**. Each new segment is added to one end of the curve. The Bézier curve can only be extend at the endpoints. **Ctrl-LMB** on inner control points will make unconnected duplicates.

**Subdivision**

- **Mode**: Edit Mode
- **Panel**: Curve Tools
- **Menu**: Surface tools ▶ Modeling ▶ Subdivide
- **Hotkey**: W

**Curve subdivision** simply subdivides all selected segments by adding one or more control points between the selected segments. To control the number of cuts, press **W** to make a single subdivision. Then press **F6** to bring up the Number of Cuts menu.

**Duplication**

- **Mode**: Edit Mode
- **Menu**: Curve ▶ Duplicate
- **Hotkey**: Shift-D

This command **duplicates** the selected control points, along with the curve segments implicitly selected (if any). The copy is selected and placed in **Grab mode**, so you can move it to another place.

**Joining Curve Segments**

- **Mode**: Edit Mode
- **Menu**: Curve ▶ Make Segment
- **Hotkey**: F

Two open curves can be **combined into one** by creating a segment between the two curves. To join two separated curves, select one end control point from each curve then press **F**. The two curves are joined by a segment to become a **single curve**.
Separating Curves

- **Mode**: Edit Mode
- **Menu**: Curve • Separate
- **Hotkey**: P

Curve objects that are made of multiple distinct curves can be separated into their own objects by selecting the desired segments and pressing **P**. Note, if there is only one curve in a Curve object, pressing **P** will create a new Curve object with no control points.

Deleting Elements

- **Mode**: Edit Mode
- **Menu**: Curve • Delete...
- **Hotkey**: X, Delete

- **Selected**: This will delete the selected control points, without breaking the curve (i.e. the adjacent points will be directly linked, joined, once the intermediary ones are deleted).

- **Segment**: This option is somewhat the opposite to the preceding one, as it will cut the curve, without removing any control points, by erasing one selected segment.

Opening and Closing a Curve

- **Mode**: Edit Mode
- **Menu**: Curve • Toggle Cyclic
- **Hotkey**: Alt-C

This toggles between an open curve and closed curve (Cyclic). Only curves with at least one selected control point will be closed/open. The shape of the closing segment is based on the start and end handles for Bézier curves, and as usual on adjacent control points for NURBS. The only time a handle is adjusted after closing is if the handle is an Auto one. Open and Closed curves is the same Bézier curve open and closed.
Curve Extrusion

- **Mode**: Object or Edit Mode
- **Panel**: Curve and Surface
- **Extrude**

Turns a **one-dimensional curve into a two-dimensional curve** by giving it height. Note that this is not related to **Extrude** used in Mesh edit-mode. With a scale of one, an Extrusion of 0.5 will extrude the **curve 0.5 BU** in both directions, perpendicular to the curves normals.

Title-Img 3.6 Curve Extrusion

**Source**: Blender.org

**Link**: [https://easyblend.org/html/modeling/curves/editing/extrude.html](https://easyblend.org/html/modeling/curves/editing/extrude.html)

**Tilt**

This setting controls how the normals (visualization: arrows) twist around each control point – so it is only relevant with 3D curves! You set it using the Tilt transform tool in the **T tool shelf**, the **N ▶ transform ▶ Mean tilt**, or **Curve ▶ Transform ▶ Tilt**.

You can also reset it to its default value (i.e. perpendicular to the original curve plane) with **Alt-T, Curve ▶ Control Points ▶ Clear Tilt**.

With **NURBS**, the tilt is always smoothly **interpolated**. However, with **Bézier**, you can choose the interpolation algorithm between Linear, Ease, B-Spline, and Cardinal, in the

Properties Editor ▶ Object Data ▶ Active Spline ▶ Tilt
Bevel Depth

This will add a bevel to the Extrusion. Refer Img 3.8 for its effects... Note that the bevel makes the Extrusion wider and higher. If set to 0.0, there is no bevel.

Bevel Resolution

It controls the resolution of the bevel created by a Bevel Depth higher than zero. If set the to 0 (the default), the bevel is a simple “flat” Surface. Higher values will smooth, round off the bevel, similar to the resolution settings of the curve itself.
Offset

Offset Moves the Extrusion parallel to the curve normal. Almost like scaling

-1 Offset, 0.5 Extrusion, 0.25 Bevel Depth,
10 Bevel resolutions

Radius

The Radius allows you to directly control the width of the Extrusion along the “spinal” curve. The Radius of the points is set using the Shrink/Fatten Radius transform tool Alt-S, the Curve ▶ Transform ▶ Shrink/Fatten Radius, or the N ▶ transform ▶ Radius.
Tip

Remember, these curves can be converted into Meshes with Alt-C in Object Mode.

Three Sub-Classes of Curve:

We have three sub-classes of results, depending on whether the curve is open or closed or 3D.

Open 2D Curve

The Extrusion will create a “wall” or “ribbon” following the curve shape. If using a Bevel Depth, the wall becomes a sort of slide or gutter. If your normals are facing the wrong way you can switch their direction as shown here.

Title-Img 3. 6 Open 2D Curve with Alt-C, fill set to none, zero offset, 0.5 Extrusion, 0.25 Bevel Depth, 10 Bevel resolution.

Source-Blender.org
Link-

Closed 2D Curve

This is probably the most useful situation, as it will quickly create a volume, with (by default) two flat and parallel Surfaces filling the two sides of the extruded “wall”. You can remove one or both faces by choosing the fill mode: both, front, back, or none.

The optional bevel depth will always create a 90 degree bevels here.
Advanced Extrusion

These Extrusions use one or two additional curve objects, to create very complex organic shapes.

To enable this type of Extrusion, you must type a valid curve object name in the Bevel Object field of the curve you are going to use as the “spinal column” of your Extrusion. The “bevel” curve will control the cross section of the extruded object. Whether the Bevel Object curve is 2D or 3D has no importance, but if it is closed, it will create a “tube-like” Extrusion; otherwise you will get a sort of gutter or slide object...

The object is extruded along the entire length of all internal curves. By default, the width of the Extrusion is constant, but you have two ways to control it,

1. Radius property of control points
2. Taper Object.

Taper Curve

Taper Curve is evaluated along the local X axis, using the local Y axis for width control. Note also that:

It must be an open curve.

The taper is applied independently to all curves of the extruded object.

Only the first curve in a Taper Object is evaluated, even if you have several separated segments.

The scaling starts at the first control-point on the left and moves along the curve to the last control-point on the right.
Negative scaling, (negative local Y on the Taper Curve) is possible as well. However, rendering artifacts may appear.

It might need to increase the curve resolution to see more detail of the taper.

With **closed curves**, the Taper Curve in Taper Object acts along the whole curve (perimeter of the object), not just the length of the object, and varies the Extrusion depth. In these cases, you want the relative height of the Taper Object Taper Curve at both ends to be the same, so that the **cyclic point** (the place where the endpoint of the curve connects to the beginning) is a smooth transition.

Let us taper a simple curve circle extruded object using a Taper Curve.

- **Step 1:** Add a curve,
- **Step 2:** Then exit Edit Mode.
- **Step 3:** Add another one (a closed one, like a circle);
- **Step 4:** Call it “Bevel Curve”,
- **Step 5:** Enter its name in the Bevel Object field of the first curve (Curve and Surface tab). We now have a pipe.
- **Step 6:** Add a third curve while in Object Mode and
- **Step 7:** Call it “Taper Curve”.
- **Step 8:** Adjust the left control-point by raising it up about 5 units.
- **Step 9:** Now return to the Object tab,
- **Step 10:** Edit the first curve’s Taper Object field in the Curve and Surface panel to reference the new Taper Curve which we called “Taper Curve”.

When you hit enter the Taper Curve is applied immediately, with the results shown in [Img 3.13](#) Circle curve set as Bevel Object.
You can see the Taper Curve being applied to the extruded object. Notice how the pipe’s volume shrinks to nothing as the Taper Curve goes from left to right. If the Taper Curve went below the local Y axis the pipe’s inside would become the outside, which would lead to rendering artifacts. Of course, as an artist, that may be what you are looking for!

**Taper Examples**

In Taper example 1 (Img 3.14), You can clearly see the effect the left Taper Curve has on the right curve object. Here the left Taper Curve is...
closer to the object center and that results in a smaller curve object to the right.

In Taper example 2 (Img 3.15), A control point in the Taper Curve to the left is moved away from the center and that gives a wider result to the curve object on the right.

In Taper example 3 (Img 3.16), We see the use of a more irregular Taper Curve applied to a curve circle.
Surfaces

Surface Editing

Curves are 2D objects, and Surfaces are their 3D extension. Note however, that in Blender, you only have NURBS Surfaces, no Bezier (you have the Bezier knot type, though; see below), nor polygonal (but for these, you have Meshes!). Even though curves and Surfaces share the same object type (with texts also...), they are not the same thing; for example, you cannot have in the same object both curves and Surfaces.
Nurbs Surface in Edit Mode

You may ask yourself “The Surface appears to be 3D, why is it only 2D?”

In order to be 3D, the object needs to have “Volume”, and a Surface, even when it is closed, does not have volume; it is infinitely thin. If it had a volume the Surface would have a thickness (its third dimension). Hence, it is only a 2D object, and has only two interpolation dimensions or axes or coordinates (if you know a bit of math, think of non-euclidean geometry – well, Surfaces are just non-euclidean 2D planes...).

**Tip**

To take a more “real life” example, you can roll a sheet of paper to create a cylinder; well, even if it “draws” a volume, the sheet itself will remain a nearly 2D object!

Primitives

To get started in creating Surfaces, there are four preset NURBS Surfaces, found in the Add ▶ Surface as

1. NURBS Surface
2. NURBS Tube
3. NURBS Sphere
4. NURBS Torus

Source-Blender.org


Source-Blender.org

Properties

Title-Img 3.15 Surface Properties.

Source-Blender.org


Shape

Title-Img 3.16 Shape panel.

Source-Blender.org


You can adjust the resolution separately for both preview and render, to not slow things down in the viewport, but still get good render results.

Preview
U, V

Render
U, V
Beziers Endpoint

Just like with NURBS curves, NURBS Surfaces have two knot vectors, one for each U and V axis. Here again, they can be one of Cyclic, Endpoint, or Bezier, with the same properties as for curves. And as with curves, only Open Surfaces (in the relevant direction) are affected by this setting.

Title-Img 3. 17Endpoint U.

Source-Blender.org

In Img 3.22 Endpoint U, the U interpolation axis is labeled as “U” and the V interpolation axis is labeled as “V”. The U’s interpolation axis has been set to Endpoint and as such the Surface now extends to the outer edges from E1 to E2 along the U interpolation axis.

Adding or Extruding

- **Mode**: Edit Mode
- **Menu**: Surface ▶ Extrude
- **Hotkey**: E, Ctrl-LMB

Unlike Meshes or curves, you cannot generally directly add new control points to a Surface (with Ctrl-LMB clicks), as you can only extend a Surface by adding a whole U- or V-row at once. The only exception is when working on a NURBS Surface curve, i.e. a Surface with only one control point on each U- or V-row. In this special case, all works exactly as with curves.

Most of the time, only Extrusion is available. As usual, once the tool is activated the Extrusion happens immediately and you are placed into Grab mode, ready to drag the new extruded Surface to its destination.
There are two things very important to understand:

**Surfaces are 2D objects. So, you cannot extrude anything inside a Surface (e.g. “inner” row); it would not make any sense!**

The control “grid” must remain “squarish”, which means that you can only extrude a whole row, not parts of rows here and there.

To summarize, the Extrude tool will only work, when **only one whole border row** is selected, otherwise nothing happens.

**Examples**

Selecting control-point to show a typical Extrusion along the side of a Surface.

In [Img 3.23](#), Selecting **control-point** and **Shift-R**, a border row of control points was highlighted by selecting a single control point, and then using the handy row select tool **Shift-R** to select the rest of the control points.

The edge is then extruded using E as shown in [Img 3.24](#) Extruding. Notice how the Mesh has bunched up next to the highlighted edge. That is because the new extruded Surface section is bunched up there as well.
By moving the new section away from the area, the Surface begins to “un-bunch”.

You can continue this process of extruding or adding new Surface sections until you have reached the final shape for your model.

Deleting Elements

- **Mode**: Edit Mode
- **Menu**: Curve • Delete
- **Hotkey**: X, Delete

The Erase pop-up menu of Surfaces offers an option:

- **Selected**

This will delete the selected rows, without breaking the Surface (i.e. the adjacent rows will be directly linked, joined, once the intermediary ones are deleted). The selection must abide by the following rules:

Whole rows, and only whole rows must be selected. Only rows along the same axis must be selected (i.e. you cannot delete both $U$- and $V$-rows at the same time).

Example

Source-Blender.org


In Img 3. 21 Before and after (left) a row of control points has been selected by initially selecting the one control point and using **Shift-R** to select the remaining control points. Then, using the **Delete Menu X**, the
selected row of control points is erased, resulting in Img 3. 22 Before and after (right).

**Joining or Merging Surfaces**

- **Mode**: Edit Mode
- **Menu**: Surface ‣ Make Segment
- **Hotkey**: F

This command is equivalent to creating edges or Faces for Meshes (hence its shortcut), and so it only works in **Edit Mode**. The selection must contain only border rows of the same resolution (with the same number of control points), else Blender will try to do its best to guess what to merge with, or the merge will fail (either silently, or stating that Resolution does not match if rows with different number of points are selected, or that there are too few selections to merge if you only selected points in one Surface).

**Examples**

*Joining ready.  Joining complete.*

**Title**-Img 3. 23Before and After

**Source**-Blender.org

Unit summary

In this Unit, you have learnt what is 3D Interface and how to

- Create Objects and work with Curves and Surfaces in Blender
- Edit the Curves and Surfaces using different Modes in Blender
- Work with Surface modelling
- Work with Nurbs modelling
- Work effectively with 2D shapes
- Prepare Curve Deformation and Curve Extrusion

After learning this Unit, you can download the Open Source Software available on the internet for free of cost to practice the possibilities of creating 3D Interface.

Assignment

- Create a Flower Vase, a Wine Glass and a Cup using Nurbs curves

Assessment

Explain Nurbs Modelling.
Write a brief note on the Editing methods in Curve.
Explain Bezier handle types.
Describe the properties of 2D and 3D shapes.
Write a brief note on Extending curves
Explain the types of Curve Extrusion

Fill in the Blanks

1. ________________ are the most commonly used curves for designing letters or
logos.

1. ___________ turns a one-dimensional curve into a two-dimensional curve by giving it height.

2. ___________ moves the Extrusion parallel to the curve normal.

3. ___________ allows you to directly control the width of the Extrusion along the “spinal" curve.

4. ___________ handle has a completely automatic length and direction which is set by Blender to ensure the smoothest result.

Resources

While studying this Unit, you can browse the internet links for online tutorials and several books and training DVDs available in the Blender Store and on the Blender Cloud.

- wiki.blender.org
- archive.org
- www.blender.org
- docs.blender.org
Unit 4

Organic Modelling

Introduction

In this Unit, you will learn the creation of a 3D scene and the usage of three key components to create the real-time geometry Modelling in Blender.

You will also learn to use the specific features of your chosen 3D software, each one of these Primitives can be manipulated to produce an Object. You will create a model in 3D, and explore the various modelling methods used in the production.

There are three basic methods that will be used to create a 3D model, and you will understand how to create a model using each technique.

Outcomes

Upon completion of this unit you will be able to:

- Create Object with 3D Primitives
- Edit the Object with different Modes
- Mesh Modelling
- Create Polygon Objects
- Analyse the Mesh

Terminology

Structure: With Meshes, everything is built from three basic structures: Vertices, Edges and Faces.

Vertices: A vertex is primarily a single point or position in 3D space.
Unit 4 Organic Modelling

**Fig 4.1**

**Terminology**

**Edges:** An edge always connects two vertices by a straight line.

**Faces:** Faces are used to build the actual surface of the Object.

**Loops:** Edge and Face Loops are sets of faces or edges that form continuous “loops”.

**Edge Loops:** Loops (1 and 2) in Fig 4.1. Edge and Face Loops are edge Loops.

**Face Loops:** These are a logical extension of Edge Loops in that they consist of the faces between two Edge Loops.

**Edge Ring:** In Edge select mode, holding Ctrl-Alt while selecting an edge selects a sequence of edges that are not connected.

**Subdividing:** Technique for adding more geometry to a Mesh. It creates new vertices on subdivided edges, new edges between subdivisions and new faces based on new edges.

**Tessellation:** The tiling of a plane using one or more geometric shapes usually resulting in Micro polygons.

**Coplanar:** Refers to any set of elements that are all aligned to the same 2D plane in 3D space.

**Modelling Modes**

3D View has **three principal modes** that allow for the creation, editing and manipulation of the Mesh models. Each of the three modes has a **variety of tools**. Some tools may be found in one or more of the modes.

**Modes used for Modelling**

Creation of a **Mesh Primitive** typically starts by adding a **Mesh Object** in Object Mode. Limited types of editing such as size, location, and orientation can be accomplished in Object Mode. Object Mode also provides the means to **Join and Group Multiple Mesh Primitives**.

- Object Mode
- Edit Mode
- Sculpt Mode
More detailed editing of the Mesh model shape is done in **Edit Mode, and Sculpt Mode**. The nature of these three modes determines the tools that are available within the various panels of 3D View. Switching between modes while Modelling is common. Some tools may be available in more than one mode while others may be unique to a particular mode.

You can work with **Geometric Objects** in two modes.

**Object Mode**

Object Mode Operations in Object Mode affect the **whole Object**. Object Mode has the following header in 3D View:

![Object Mode Header](https://docs.blender.org/manual/en/dev/modeling/meshes/introduction.html)

**Edit Mode**

Operations in Edit Mode affect only the **geometry of an Object**, but not global properties such as location or rotation. Edit Mode has the following header in 3D View:

![Edit Mode Header](https://docs.blender.org/manual/en/dev/modeling/meshes/introduction.html)

**Visualization**

![One cube selected](https://docs.blender.org/manual/en/dev/modeling/meshes/introduction.html)
By default, Blender highlights selected geometry in orange in both Object Mode and Edit Mode.

- In Object Mode with Wireframe shading enabled Z, Objects are displayed in black when unselected and in orange when selected. If more than one Object is selected, all selected Objects except the active Object, typically the Object last selected, are displayed in a darker orange color. Similarly, in Edit Mode, unselected geometry is drawn in black while selected faces, edges, or vertices are drawn in orange. The active face is highlighted in white.

- In Edit Mode, only one Mesh can be edited at the time. However, several Objects can be joined into a single Mesh (Ctrl-J in Object Mode) and then separated again (P in Edit Mode). If multiple Objects are selected before entering Edit Mode, all the selected Objects remain highlighted in orange indicating that they are part of the active selection set.

If two vertices joined by an edge are selected in Vertex selection mode, the edge between them is highlighted too. Similarly, if enough vertices or edges are selected to define a face, that face is also highlighted.
**Tool Shelf**

Title-Img 4. 5 The Tool Shelf panel in edit mode.

Attribution-

Source-Blender.org


Open/Close the Mesh Tools panel using T. When entering Edit Mode, several Mesh tools become available.

Most of these tools are also available as shortcuts (displayed in the Tooltips for each tool) and/or in the Specials Menu W, the Edge menu Ctrl-E, and Face menu Ctrl-F. The properties of each tool are displayed in the operator panel at the bottom of the Tool Shelf.
Properties Region

![Properties Region in edit mode.](image)

Source: Blender.org  

Open/close the Properties Region using N.

In the Properties Region, panels directly related to Mesh editing are the Transform panel, where numeric values can be entered, and the Mesh Display panel, where for example normals and numeric values for distances, angles, and areas can be turned on.

Structure

With Meshes, everything is built from three basic structures: Vertices, Edges and Faces.
Vertices

A vertex is primarily a **single point or position** in 3D space. It is usually invisible in rendering and in Object Mode. Do not mistake the center point of an Object for a vertex. It looks similar, but it is **bigger** and you cannot select it. Refer Vertex example (Img 4.8). Shows the center point labelled as “A”; “B” and “C” are vertices.
A simple way to create a new vertex is to click Ctrl-LMB in Edit Mode. Of course, as a computer screen is two-dimensional, Blender cannot determine all three vertex coordinates from a single mouse click, so the new vertex is placed at the depth of 3D cursor. Using the method described above (Img 4.8), any vertices selected previously are automatically connected to the new ones by an edge. In the image above, the vertex labelled “C” is a new vertex added to the cube with a new edge added between “B” and “C”.

**Edges**

An Edge always connects two vertices by a straight line. The edges are the “wires” you see when you look at a Mesh in wireframe view. They are usually invisible on the rendered image. They are used to construct faces. Create an edge by selecting two vertices and pressing F.

**Face**

A Face is defined as the area between either three (triangles), four (quadrangles) or more (ngons) vertices, with an edge on every side. These are often abbreviated to tris, quads & ngons.

Triangles are always flat and therefore easy to calculate. On the other hand, quadrangles “deform well” and are therefore preferred for subdivision Modelling.

While you could build a cube with triangular faces, it would just look more confusing in Edit Mode.

**Loops**

![Title-Img 4. 5Edge and Face Loops](image_url)
Edge and Face Loops are sets of faces or edges that form continuous “loops” as shown in Img 4.9.

**Edge and Face Loops:**

- Top row (1 - 4) shows a solid view,
- Bottom row (5 - 8) a wireframe view of the same loops.

In the image above (Img 4.9), loops that do not end in poles are cyclic (1 and 3). They start and end at the same vertex and divide the model into two partitions. Loops can be a quick and powerful tool to work with specific, continuous regions of a Mesh and are a prerequisite for Organic Character Animation.

**Edge Loops**

Loops (1 and 2) in Img 4.9 Edge and Face Loops are edge Loops. They connect vertices so that each one on the loop has exactly two neighbours that are not on the loop and placed on both sides of the loop (except the start and end vertex in case of poles).

**Edge Loops** are an important concept especially in organic (subsurface) Modelling and character animation. When used correctly, they allow you to build models with relatively few vertices that look very natural when used as subdivision surfaces and deform very well in animation.

**Face Loops**

These are a logical extension of Edge Loops in that they consist of the faces between two Edge Loops, as shown in loops (3 and 4) in Img 4.9 Edge and Face Loops. Note that for non-circular loops (4) the faces containing the poles are not included in a Face Loop. (Refer Img 4.9)

---

**Tip**

Loops (2 and 4) do not go around the whole model. Loops stop at so called poles because there is no unique way to continue a loop from a pole. Poles are vertices that are connected to either three, five, or more edges. Accordingly, vertices connected to exactly one, two or four edges are not poles.
Selection Mode

Select Mode Header Widgets

- **Mode**: Edit Mode
- **Menu**: 3D View Header • Select Mode
- **Hotkey**: Ctrl-Tab

In Edit Mode, there are three different selection modes. You can enter the different modes by selecting one of the three buttons in the header.

### Vertices

In this mode, vertices are drawn as points.

- Selected vertices are drawn in **orange**,
- Unselected vertices in **black**
- Active or last selected vertex in **white**

### Edges

In this mode, the vertices are not drawn. Instead,

- Selected edges are drawn in orange,
- Unselected edges black,
- Active or last selected edge in white.
Faces

In this mode, the faces are drawn with a selection point in the middle which is used for selecting a face.

- Selected faces and their selection point are drawn in orange,
- Unselected faces are drawn in black,
- Active or last selected face is highlighted in white.

Almost all tools are available in all three Mesh selection modes. So, you can Rotate, Scale, Extrude, etc. in all modes. Of course, rotating and scaling a single vertex will not do anything useful (without setting the pivot point to another location), so some tools are applicable in some modes.

Selection Loops

You can easily select loops of components:

**Edge Loops and Vertex Loops**

- **Mode**: Edit Mode → Vertex or Edge select mode
- **Menu**: Select • Edge Loop or Mesh • Edges • Edge Loop
- **Hotkey**: Alt-RMB or Ctrl-E Edge Loop

Holding Alt while selecting an edge selects a loop of edges that are connected in a line end to end, passing through the edge under the mouse pointer. Holding Alt-Shift while clicking adds to the current selection.

Edge loops can also be selected based on an existing edge selection, using either Select ➤ Edge Loop, or the Edge Loop Select option of the Edge Specials Menu Ctrl-E.

<table>
<thead>
<tr>
<th>Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex mode</strong>&lt;br&gt;In Vertex select mode, you can also select edge loops, by using the same hotkeys, and clicking on the edges (not on the vertices).</td>
</tr>
</tbody>
</table>
Title-Img 4. 7Longitudinal and latitudinal edge loops

Source-Blender.org

Link-

Face Loops

- **Mode**: Edit Mode → Face or Vertex select modes

- **Hotkey**: Alt-RMB

In **face select mode**, holding **Alt** while selecting an edge selects a loop of faces that are connected in a line end to end, along their opposite edges.

In **vertex select mode**, the same can be accomplished by using **Ctrl-Alt** to select an edge, which selects the face loop implicitly.

Title-Img 4. 8Face loop selection

Source-Blender.org

Link-
This face loop was selected by clicking with Alt-RMB on an edge, in face select mode. The loop extends perpendicular from the edge that was selected.

Title-Img 4. 9Alt versus Ctrl-Alt in vertex select mode

Source-Blender.org

Link-

A face loop can also be selected in Vertex select mode. Technically Ctrl-Alt-RMB will select an Edge Ring, however, in Vertex select mode, selecting an Edge Ring implicitly selects a Face Loop since selecting opposite edges of a face implicitly selects the entire face.

**Edge Ring**

- **Mode:** Edit Mode → Edge select mode
- **Menu:** Select • Edge Ring or Mesh • Edges • Edge Ring
- **Hotkey:** Ctrl-Alt-RMB or Ctrl-E • Select • Edge Ring

In Edge select mode, holding Ctrl-Alt while selecting an edge selects a sequence of edges that are not connected, but on opposite sides to each other continuing along a face loop.

As with edge loops, you can also select **edge rings** based on current selection, using either Select • Edge Ring, or the Edge Ring Select option of the Edge Specials Menu Ctrl-E.

**Vertex mode**

In Vertex select mode, you can use the same hotkeys when clicking on the edges (not on the vertices), but this will directly select the corresponding face loop.
Title-Img 4.10A selected edge loop, and a selected edge ring

Source-Blender.org

Link-

In Img 4.14, A selected edge loop, and a selected edge ring. The same edge was clicked on, but two different “groups of edges” were selected, based on the different commands. One is based on edges during computation and the other is based on faces.

Duplicating / Mesh Editing Tools

This section covers Mesh editing tools that add additional geometry by duplicating existing geometry in some way.

Duplicate Geometry
Extrusion
Spin
Screw

Duplicate Geometry Tool

- **Mode**: Edit Mode
- **Menu**: Mesh › Duplicate
- **Hotkey**: Shift-D

This tool simply duplicates the selected elements, without creating any links with the rest of the Mesh (unlike extrude, for example), and places the duplicate at the location of the original. Once the duplication is done, only the new duplicated elements are selected, and you are automatically placed in grab/move mode, so you can translate your copy elsewhere.
Extrude Tool

Extrude Region

- **Mode**: Edit Mode
- **Panel**: Mesh Tools • Extrude
- **Menu**: Mesh • Extrude Region
- **Hotkey**: E or Alt-E

One tool of paramount importance for working with Meshes is the **Extrude tool**. It allows you to create parallelepipeds from rectangles and cylinders from circles, as well as easily create such things as **tree limbs**. **Extrude is one of the most frequently used Modelling tools in Blender**

The selection is extruded along the common normal of selected faces. In every other case the extrusion can be **limited to a single axis** by specifying an axis (e.g. X to limit to the X axis or Shift-X to the YZ plane. When extruding along the face normal, limiting movement to the **global Z axis** requires pressing **Z twice**, once to disable the face **normal Z axis** limit, and once to enable the global Z axis limit.

![Selected face](https://docs.blender.org/manual/en/dev/modeling/meshes/editing/duplicating/extrude.html)

**Source-Blender.org**

**Link-**

**Ext Mode: Edit Mode**

- **Panel**: Mesh Tools • Extrude Individual
- **Menu**: Mesh • Extrude Individual
- **Hotkey**: Alt-E

Extrude Individual allows you to **extrude a selection** of multiple faces as individuals, instead of as a region. The faces are extruded along their
own normals, rather than their average. This has several consequences: first, “internal” edges (i.e. edges between two selected faces) are **no longer deleted** (the original faces are).

Extrude Edges and Vertices Only

- **Mode**: Edit Mode, Vertex and Edge
- **Hotkey**: Alt-E

If vertices are selected while doing an extrude, but they do not form an edge or face, they will extrude as expected, forming a non-manifold edge. Similarly, if edges are selected that do not form a face, they will extrude to form a face.
3D Animation

Inset Tool

- **Mode:** Edit Mode
- **Menu:** Mesh \> Faces \> Inset
- **Hotkey:** I

This tool takes the currently selected faces and creates an inset of them, with adjustable thickness and depth. The tool is modal, such that when you activate it, you may adjust the thickness with your mouse position. You may also adjust the depth of the inset during the modal operation by holding Ctrl.

Spin Tool

- **Mode:** Edit Mode
Panel: Mesh Tools

Use the Spin tool to create the sort of Objects that you would produce on a lathe (this tool is often called a “lathe”-tool or a “sweep”-tool in the literature, for this reason). In fact, it does a sort of circular extrusion of your selected elements, center on 3D cursor, and around the axis perpendicular to the working view...

The point of view will determine around which axis the extrusion spins.

The position of 3D cursor will be the center of the rotation. (Refer Img. 4.20)

Example

![Img 4.15 Glass profile](https://docs.blender.org/manual/en/dev/modeling/meshes/editing/duplicating/spin.html?highlight=glass%20profile)

**Source:** Blender.org

**Link:**

First, create a Mesh representing the profile of your Object. If you are Modelling a hollow Object, it is a good idea to thicken the outline. Img. 4.20 Glass profile Shows the profile for a wine glass we will model as a demonstration.

Go to the **Edit Mode** and select all the vertices of the Profile with A.

We will be rotating the Object around the cursor in the top view, so switch to the top view with **Numpad7**.
Place the cursor along the center of the profile by selecting one of the vertices along the center, and snapping 3D cursor to that location with **Mesh ▶ Cursor ▶ Selection.** (Img 4. 171. Glass profile, top view in Edit Mode, just before spinning.) Shows the wine glass profile from **top view,** with the cursor correctly positioned.

Click the **Spin button.** If you have **more than one 3D View** open, the cursor will change to an arrow **with a question mark** and you will have to click in the area containing the top view before continuing. If you have **only one 3D View open,** the spin will happen immediately. **Img 4. 18** Spun profile Shows the **result of a successful spin.**

**Angle**

Title-Img 4. 19 Spun Profile with an angle of 360 and 120.

**Source-Blender.org**

**Link-**

Result of spin operation
Result of Dupli enabled

Title-Img 4. 20 Result of Spin & Dupli

Source-Blender.org
Link-

Merge Duplicates

Title-Img 4. 21 Duplicate Vertices

Source-Blender.org
Link-

The spin operation leaves duplicate vertices along the profile. You can select all vertices at the seam with Box select B shown in Img 4. 24 Duplicate vertices. Seam vertex selection and perform a Remove Doubles operation.

Bevel Tool

- Mode: Edit Mode
- Menu: Mesh ▸ Edges ▸ Bevel or Ctrl-E ▸ Bevel
• **Usage**

The **Bevel tool** works only on selected edges. It will recognize any edges included in a vertex or face selection as well, and perform the bevel the same as if those edges were explicitly selected. In **vertex only** mode, the Bevel tool works on selected vertices instead of edges. The Bevel tool smooths the **edges and/or “corners”** (vertices) by replacing them with faces making smooth profiles with a specified number of segments (see the options below for details about the bevel algorithm).

Use **Ctrl-B** or a method listed above to run the tool. Move the mouse to interactively specify the bevel offset, and scroll the Wheel to increase or decrease the number of segments. (See **Img 4. 25**)

Title-Img 4. 22Bevel

Source-Blender.org

**Link-**

**Merge Vertices**

This tool allows you to **merge all selected** vertices to a unique one, deleting all others. You can choose the location of the surviving vertex in the menu this tool pops up before executing.

**Study Skills**

https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Mesh_Modelling
Unit summary

- Create Object with 3D Mesh / Primitives
- Edit the Object with different Modes
- Work with Mesh Modelling
- Create Polygon Objects
- Analyse the Mesh

After learning this Unit, you can download the Open Image Source Software available on the internet for free of cost to practice the possibilities of creating 3D Objects.

Assignment

- Create a flower vase, a wine glass and a cup using Nurb curves.
Assessment

1. Explain the Modelling Modes in Blender
2. Write a brief note on the Structure of a Mesh
3. Explain the Loops used in Polygon Modelling
4. Describe the types of selection modes in Mesh modelling
5. Write a brief note on Edge/Face tool
6. How is Mirror Editing tool used?

Fill in the Blanks

1. ____________ is available in either Edit Mode or Object Mode.

2. Selected vertices are drawn in ___________ color, unselected vertices in ___________ color.

3. Pressing _____________ Key when selecting a higher selection mode, all elements touching the current selection will be added.

4. A _____________ is primarily a single point or position in 3D space.

5. Operations in _____________ effect only the geometry of an Object.

Resources

While studying this Unit, you can browse the internet links for online tutorials and several books and training DVDs available in the Blender Store and on the Blender Cloud.

- wiki.blender.org
- archive.org
- www.blender.org
- docs.blender.org

Study Skills