
Educational App  
Development Toolkit  
for Teachers  
and Learners





Educational App  
Development Toolkit  

for Teachers  
and Learners

 
Educational App  

Development Toolkit  
for Teachers and Learners

Ishan Sudeera Abeywardena



The Commonwealth of Learning (COL) is an intergovernmental organisation created by  
Commonwealth Heads of Government to promote the development and sharing of open learning 
and distance education knowledge, resources and technologies.

 Commonwealth of Learning, 2015

© 2015 by the Commonwealth of Learning. Educational App Development Toolkit for 
Teachers and Learners is made available under a Creative Commons Attribution-ShareAlike 4.0  
Licence (international): http://creativecommons.org/licenses/by-sa/4.0.

For the avoidance of doubt, by applying this licence the Commonwealth of Learning  
does not waive any privileges or immunities from claims that it may be entitled to assert,  
nor does the Commonwealth of Learning submit itself to the jurisdiction, courts,  
legal processes or laws of any jurisdiction.

Educational App Development Toolkit for Teachers and Learners  
Ishan Sudeera Abeywardena, PhD 

ISBN: 978-1-894975-73-5

Image credits: pp. 126-127.

Published by:

COMMONWEALTH OF LEARNING 
4710 Kingsway, Suite 2500 
Burnaby, British Columbia Canada V5H 4M2

Telephone: +1 604 775 8200 
Fax: +1 604 775 8210 
Web: www.col.org 
Email: info@col.org



Educational App Development Toolkit for Teachers and Learners I

Contents
About the Toolkit	 1
	 How to Use the Toolkit	 2

	 Using the Toolkit: Students	 2

	 Using the Toolkit: Teachers	 3

1. MIT App Inventor 	 4
	 1.1 Introduction	 4

	 1.2 Creating an App Inventor Account	 5

	 1.3 The Development Environment	 5

	 1.4 Device Setup for App Development and Debugging	 7

	 1.4.1 Building Apps with an Android Device and Wi-Fi Connection	 8

	 1.4.2 Building Apps with the Emulator	 11

	 1.4.3 Building Apps with an Android Device and USB Cable	 14

2. Activities 	 19
	 Activity 1: TextToSpeech (Loud Mouth)	 21

	 Activity 2: AccelorometerSensor (Stop Shaking Me)	 31

	 Activity 3: SpeechRecognizer (Dictation)	 35

	 Activity 4: Canvas (Join the Dots)	 40

	 Activity 5: Ball and ImageSprite (Move the Ball)	 43

	 Activity 6: TinyDB, PhoneNumberPicker and PhoneCall (Call a Friend)	 51

	 Activity 7: Camera (Say Cheese!)	 61

	 Activity 8: Camcoder and VideoPlayer (Action Capture)	 64

3. Tutorials	 67
	 Tutorial 1: Pet the Kitty	 67

	 Tutorial 2: Swat the Mosquito	 70

	 Tutorial 3: Dice	 73

	 Tutorial 4: Virtual Chemistry Experiments	 77

	 Tutorial 5: Scan and Learn	 84

	 Tutorial 6: Voice Note	 87

4. Packaging and Distribution	 96

	 4.1	 Sharing your app so that others can remix it (.aia file)	 96

	 4.2	 Sharing your app for others to install on their phone/tablet (.apk file)	 97



Educational App Development Toolkit for Teachers and LearnersII

List of Figures
Figure 1.1  The Designer view of the AI2 platform	 6

Figure 1.2  The Blocks view of the AI2 platform	 6

Figure 1.4  QR code to download the Companion app from the Google Play Store	 8

Figure 1.3  Building apps with an Android device and Wi-Fi connection	 8

Figure 1.5  Connecting to AI Companion from AI2	 9

Figure 1.6  Connecting to your project using a QR code or six-character code	 10

Figure 1.7  Using the emulator to build apps 	 11

Figure 1.8  The aiStarter icon for Windows	 12

Figure 1.9  aiStarter start-up window	 12

Figure 1.10  Connecting to the emulator from AI2	 13

Figure 1.11  Update screens during emulator start-up	 13

Figure 1.12  The four phases of emulator start-up	 14

5. Publishing Apps on Google Play	 99

	 5.1  The Developer Console	 99

		  5.1.1  All Applications	 99

		  5.1.2  Account Details	 100

		  5.1.3  Linking Your Merchant Account	 101

		  5.1.4  Multiple User Accounts	 101

		  5.1.5  Store Listing Details	 102

		  5.1.6  Upload and Instantly Publish	 104

		  5.1.7  Alpha- and Beta- Testing	 104

		  5.1.8  Staged Rollouts	 105

	 5.2  Multiple APK Support	 105

	 5.3  Selling and Pricing Your Products	 106

	 5.4  In-App Products	 107

		  5.4.1  Distribution Controls	 107

		  5.4.2  Geographic Targeting	 107

		  5.4.3  Capabilities Targeting	 107

	 5.5  User Reviews and Crash Reports	 109

		  5.5.1 App Statistics	 110

6. Workshop Design and Evaluation	 111
	 6.1 Workshop Training Schedule	 111

	 6.2 Workshop Evaluation	 114

7. Useful Resources	 119



Educational App Development Toolkit for Teachers and Learners III

Figure 1.13  Using a USB cable to build apps	 14

Figure 1.14  QR code to download the Companion app from the Google Play Store	 16

Figure 1.15  The aiStarter icon for Windows	 16

Figure 1.16  aiStarter start-up window	 17

Figure 2.1  Using the Palette, Viewer and Properties in Designer view	 19

Figure 2.2  Using the Blocks drawers in Blocks view	 20

Figure 2.3  Click on the Start new project button to open a new AI2 project	 22

Figure 2.4  Name your project using the project name provided in the activity sheet	 23

Figure 2.5  The project name is displayed inside the AI2 project	 23

Figure 2.6  Blank phone screen used to develop the visual aspects of the app	 24

Figure 2.8  Change the title of the app	 25

Figure 2.9  Locate the TextBox and Button components	 25

Figure 2.10  Drag and drop TextBox and Button onto the blank phone screen	 25

Figure 2.11  TextToSpeech component located within the Media drawer of the Palette	 26

Figure 2.12  Non-visible components shown outside the visible area of the phone screen	 26

Figure 2.13  Change the Hint property of the TextBox component	 27

Figure 2.14  Change the Text property of the button to “Speak”	 27

Figure 2.15  Use the Designer and Blocks buttons to change between the Designer view  
                   and the Blocks view	 28

Figure 2.16  The logic block for the LoudMouth app	 28

Figure 2.17  Click on Button1 in the Blocks section and drag and drop the when Button1. 
                    Click do block into the empty space.	 29

Figure 2.18  Join the two blocks so they click together	 30

Figure 2.19  Join all three blocks to make the logic of your app	 30

Figure 2.20  More information popup for the TextToSpeech component	 33

Figure 2.21  The logic block for the Stop Shaking Me app	 33

Figure 2.22  Using an empty Text block	 34

Figure 2.23  Upload an image from the Resources pack	 37

Figure 2.24  The first logic block, which captures the user’s speech	 38

Figure 2.25  Appending text to the existing text when the user has stopped speaking	 38

Figure 2.26  Adding and deleting grooves in a join block	 39

Figure 2.27  Getting the result in a SpeechRecognizer.AfterGettingText block	 39

Figure 2.28  Creating a new procedure	 47

Figure 2.29  Renaming a procedure	 47

Figure 2.30  Procedure for randomly setting the positions of the Ball and the Hole	 47

Figure 2.31  Using the random integer block in the Math section	 48

Figure 2.32  Calling a procedure at Screen Initialize	 48 



Educational App Development Toolkit for Teachers and LearnersIV

 
Figure 2.33  The block to determine what happens when the Ball is flung by the user	 48

Figure 2.34  Moving the Ball back inside the bounds of the screen	 49

Figure 2.35  Making the Ball bounce back off of the edge of the screen	 49

Figure 2.36  Detecting a collision between the Ball and the ImageSprite	 50

Figure 2.37  The VerticalArrangement component	 55

Figure 2.38  Properties of the VerticalArrangement component	 55

Figure 2.39  The HorizontalArrangement component	 55

Figure 2.40  Renaming a component	 57

Figure 2.41  Using variables to store and display a value	 57

Figure 2.42  Inserting a Tag-Value pair into a TinyDB	 59

Figure 2.43  Inserting a contact from the PhoneNumberPicker into a TinyDB	 59

Figure 2.44  Removing a Tag-Value pair from the TinyDB	 60

Figure 2.45  Populating the ListPicker with the Tags in the TinyDB	 60

Figure 4.1  Exporting a project as an .aia file	 96

Figure 4.2  Importing a project into AI2	 97

Figure 4.3  Packaging an app as an .apk file	 97

Figure 4.4  Build progress of the .apk file	 98

Figure 5.1  Google Play Developer Console	 99

Figure 5.2  All applications on the Google Play Developer Console	 100

Figure 5.3  Google Developer account details	 101

Figure 5.4  Multiple user account in the Developer Console	 102

Figure 5.5  Google Play Store listing details	 103

Figure 5.6  Alpha- and beta-testing your app	 104

Figure 5.7  Selling and pricing products on Google Play	 106

Figure 5.8  Device compatibility	 108

Figure 5.9  User reviews and ratings of your app	 109

Figure 5.10  Detailed statistics about your app	 110



Educational App Development Toolkit for Teachers and Learners 1

About the Toolkit
The Android operating system (OS) is arguably dominating the current smartphone and 
tablet market. The Free and Open Source Software (FOSS) frameworks and ease of use 
have made it the most sought-after OS for use by manufacturers. With thousands of apps 
available through the Google Play Store, Android provides a feature-rich experience with an 
app for just about anything imaginable.

The exponential growth of the smartphone and tablet markets over the past few years 
has caught the attention of many sectors including government, industry and educators. 
Mobile Business (mBusiness), Mobile Learning (mLearning) and Mobile Government 
(mGovernment) are just three of the fastest-growing sectors delivering information and 
services to a global market through mobile devices. This has given rise to a massive demand 
for various customised apps, which has in turn resulted in businesses and services investing 
heavily in custom mobile applications.

Traditionally, Android app development has been a highly specialised field reserved only for 
software engineers and programmers. However, the massive demand for customised apps 
has led to the democratisation of Android app development through Visual Programming. 
Visual Programming is a concept that allows non-programmers to build powerful 
applications using logical building blocks — like constructing a jigsaw puzzle from virtual 
puzzle pieces. Each puzzle piece is a block of code that forms complete programs when 
assembled logically. The current leading visual app development platform is App Inventor 
(AI2), developed by the Massachusetts Institute of Technology (MIT). It harnesses the 
power of Google to provide a robust solution for customised app development for the 
Android OS.

This toolkit is designed to introduce the basic and some intermediate concepts of Android 
app development on the AI2 platform. By following the hands-on activities and tutorials, 
you will learn to use the Designer and Blocks Editor components of App Inventor to create 
apps that can be readily downloaded and used on your Android smartphone or tablet. 
Furthermore, the hands-on sessions will guide you on how to use features such as text-to-
speech, accelerometer, speech recognition, drawing, video, games and music playback. You 
will also create six intermediate applications in the tutorials, which will give you a solid 
foundation for developing more complex apps in the future. Finally, you will learn how to 
package and distribute your app. 



Educational App Development Toolkit for Teachers and Learners2

How to Use the Toolkit
This toolkit is designed to be used by both teachers (trainers) and students (trainees) who 
have little or no prior experience in software programming. It covers all aspects of Android 
application development on the AI2 platform, from account and device setup to publishing 
your app in the Google Play Store. You will be developing Android apps in two main 
categories. The first is Activities, relatively simple applications designed to give you hands-
on experience in the use of one or two components at a time. By following the steps in the 
Walkthrough of each Activity, you will be able to complete these apps with relative ease. The 
second category is Tutorials, where you will be exposed to apps of increasing complexity built 
using multiple related and non-related components. You will also learn how to build complex 
logic blocks to achieve high levels of user experience (UX) within your app. There is no 
Walkthrough for the tutorials. However, as you should have completed all the activities prior 
to the Tutorials, you should have minimum difficulty in the development of the apps. Once 
you have completed all the sections in this toolkit, you will be able to develop Android apps 
for various purposes including commercial ones. 

The toolkit acts as a resource for training of trainers (TOT). If you are a teacher who wants to 
teach Android app development, you must first work through this toolkit as a student. Once 
you have mastered app development on the AI2 platform, you can use the toolkit to conduct 
workshops to train others. Furthermore, since this toolkit document and the project resources 
are released under a Creative Commons Attribution-ShareAlike (CC BY-SA) 4.0 International 
licence, you are free to use them as you wish, even for commercial purposes.

Using the Toolkit: Students
•	 Step 1: Follow the instructions given in Section 1 to set up your AI2 account with live 

testing.

•	 Step 2: Familiarise yourself with the AI2 Design and Blocks views used for development.

•	 Step 3: Do all the activities in Section 2. Ensure that you build your apps sequentially 
from Activity 1 to Activity 8. Each activity is designed to build on the previous activities, 
so do not skip any.

•	 Step 4: Work through all six tutorials in Section 3. They are based on the knowledge you 
gained from doing the activities. Tutorials 1 to 6 are designed to take you from simple 
applications to intermediate and complicated application development. Each tutorial 
builds on the previous one, so follow the tutorials sequentially.

•	 Step 5: Practise packaging and distributing your apps as described in Section 4.

•	 Step 6: Familiarise yourself with the Google Play Developer Console and publishing 
apps on Google Play as discussed in Section 5.

•	 Once you have mastered app development on the AI2 platform, you are ready to teach 
others.



Educational App Development Toolkit for Teachers and Learners 3

Using the Toolkit: Teachers
•	 Sections 1 to 5 are designed to be printed and distributed as individual handouts. 

•	 All activities and tutorials are designed to be independent of each other. They can be 
printed and distributed to your students during the workshop.

•	 A workshop training schedule is provided in Section 6.1. All the workshop sessions 
are included in this toolkit. Each handout can be used as reference material when you 
conduct your workshop.

•	 A workshop evaluation form is included in Section 6.2. This can be used to gather 
feedback on your workshop for further improvement.

•	 The workshop must be conducted in a computer lab. All sessions are fully hands-on. 
Students should be encouraged to bring their own device for live testing. If this is not 
possible, they can use the emulator.	



Educational App Development Toolkit for Teachers and Learners4

1. MIT App Inventor 

1.1 Introduction1

MIT App Inventor is a blocks-based programming tool that allows even novices to start 
programming and building fully functional apps for Android devices. Newcomers to App 
Inventor can have their first app developed and running in less than an hour, and can 
program more complex apps in significantly less time than with more traditional, text-based 
languages. Initially developed by Professor Hal Abelson and a team from Google Education 
while Abelson was on sabbatical at Google, App Inventor runs as a Web service administered 
by staff at MIT’s Center for Mobile Learning — a collaboration of MIT’s Computer Science 
and Artificial Intelligence Laboratory (CSAIL) and the MIT Media Lab. MIT App Inventor 
supports a worldwide community of nearly 3 million users representing 195 countries. More 
than 100,000 active weekly users have built more than 7 million Android apps between 
them.

The work of the MIT App Inventor team is driven by five primary objectives:

•	 Sustaining and enhancing the tool: A long-term commitment to sustaining and 
enhancing MIT App Inventor as a cutting-edge free service to end-users. To this end, 
the App Inventor team is continuously improving the tool, adding new features, 
debugging and enhancing its performance.

•	 Building enterprise enhancements: Work with public agencies and private 
corporations to support unique applications of the tool by developing or enhancing 
custom features of MIT App Inventor in response to partner needs.

•	 Building capacity: Seek to expand the capacity of formal and informal computing 
education for adults and youth around the world. In doing so, be actively engaged 
in developing and disseminating resources and training materials to support those 
interested in programming in their region.

•	 Promoting computer science education: Commit to calling attention to the state of 
computer science and computational thinking in education. From a policy perspective, 
participate actively in local and national conversations about standards of computing 
education; from an awareness perspective, participate in and support large-scale 
campaigns that aim to raise awareness among new audiences.

•	 Conducting and supporting community research: Undergraduate and graduate 
students at MIT and collaborating institutions are actively engaged in conducting 
and publishing research while developing, testing and evaluating the use of MIT App 
Inventor around the world.

1	 1.1 Introduction 
is adapted from 
http://appinventor.
mit.edu/explore/
about-us.html  (8 
March 2015) under 
a CC BY-SA 3.0 
Unported Licence.



Educational App Development Toolkit for Teachers and Learners 5

As an open source tool that seeks to make both programming and app creation accessible to 
a wide range of audiences, MIT App Inventor has attracted the attention of:

•	 Formal and informal educators who have used MIT App Inventor to introduce 
programming to their Computer Science students, science club members, after-school 
programmes attendees and summer camp attendees. Many educators have also started 
to use MIT App Inventor to develop apps to support their own instructional objectives.

•	 Government and civic employees and volunteers who have harnessed the power of 
MIT App Inventor to develop often hyper-local apps in response to natural disasters 
and community-based needs.

•	 Designers and product managers who have seen the potential of MIT App Inventor 
to support the iterative design process via rapid prototyping, testing and iteration.

•	 Researchers who use MIT App Inventor to create custom apps to meet their data 
collection and analysis requirements to support their research in a wide variety of fields 
from, medical to social science.

•	 Hobbyists and entrepreneurs who have an idea they want to quickly turn into an app 
without the cost or learning curve that more traditional app creation entails.

1.2 Creating an App Inventor Account
To get started, you will need to create an App Inventor account. App Inventor 2 uses 
Google credentials for authentication, so you will first need to create a Gmail account 
if you don’t already have one. To create a new Gmail account visit https://www.gmail.
com and follow the instructions under Create an Account. Once you have created your 
Gmail account, visit http://ai2.appinventor.mit.edu to create your AI2 account. Use your 
Gmail address and password to sign in. You will then be directed to the Google accounts 
permissions page. To access the AI2 platform you need to click Allow. Congratulations! You 
are now ready to develop Android apps.

1.3 The Development Environment2

The app development on AI2 is twofold. The Designer view (Figure 1.1) gives you a visual 
representation of the application you are building. The Blocks view (Figure 1.2) provides a 
space for building the application logic using various logic components called Blocks. You 
will learn how to use these Blocks in the Activities.

2	 DesignTab.png and 
BlocksTab.png from 
http://appinventor. 
mit.edu/explore/ 
designer-blocks.
html are used under 
a Creative Commons 
Attribution-ShareAlike 
3.0 Unported Licence.



Educational App Development Toolkit for Teachers and Learners6

Figure 1.1 The Designer view of the AI2 platform

 

Figure 1.2 The Blocks view of the AI2 platform



Educational App Development Toolkit for Teachers and Learners 7

1.4 	Device Setup for App Development and 			 
	 Debugging3

You can set up App Inventor and start building apps in minutes. The Designer and Blocks 
Editor run completely in the browser (the cloud). To see your app on a device while you 
build it (also called Live Testing), follow the steps below.

You have three options for setting up live testing while you build apps.

Option 1: If you are using an Android device and you have a wireless Internet 
connection, you can start building apps without downloading any software to your 
computer. You will need to install the AppInventor Companion App for your device. This 
option is strongly recommended. (See section 1.4.1.)

Option 2: If you do not have an Android device, you will need to install software on 
your computer so that you can use the on-screen Android emulator. (See section 1.4.2.)

Option 3: If you do not have a wireless Internet connection, you will need to install 
software on your computer so that you can connect to your Android device by USB. The 
USB Connection option can be tricky, especially on Windows. Use this as a last resort. 
(See section 2.4.3.)

System Requirements 

3	 1.4 Device Setup for 
App Development 
and Debugging is 
adapted from http://
appinventor.mit.edu/
explore/get-started.
html under a Creative 
Commons Attribution-
ShareAlike 3.0 
Unported Licence.

Computer and  
operating system

Macintosh (with Intel processor): Mac OS X 10.5 or higher

Windows: Windows XP, Windows Vista, Windows 7 

GNU/Linux: Ubuntu 8 or higher, Debian 5 or higher

Browser Mozilla Firefox 3.6 or higher (Note: If you are using Firefox with  
the NoScript extension, you’ll need to turn the extension off.  
See the note on the troubleshooting page.)

Apple Safari 5.0 or higher

Google Chrome 4.0 or higher 
 
IMPORTANT: Microsoft Internet Explorer is not supported

Phone or tablet  
(or use the on-
screen emulator)

A smartphone with Android Operating System 2.3  
(“Gingerbread”) or higher



Educational App Development Toolkit for Teachers and Learners8

1.4.1 Building Apps with an Android Device and Wi-Fi Connection

A computer, Android device and Wi-Fi connection are the easiest way to test your apps  
(Figure 1.3).

With this combination, you can use App Inventor without downloading anything to your 
computer! You’ll develop apps on the AI2 website: https://ai2.appinventor.mit.edu. To do 
live testing on your Android device, simply install the MIT App Inventor Companion app 
on your Android phone or tablet. Once the Companion is installed, you can open projects 
in App Inventor on the Web, open the Companion on your device and test your apps as you 
build them.

The following steps will walk you through the process.

Step 1: Download and install the MIT AI2 Companion App on your phone

Open your device’s QR code scanner and scan the QR code (Figure 1.4) to download the 
Companion App from the Google Play Store. If you don’t have a QR code scanner installed 
on your device, you can download one for free from Google Play. QR Droid Code Scanner 
is one example (https://play.google.com/store/apps/details?id=la.droid.qr&hl=en).

Alternatively, follow this link from your device: https://play.google.com/store/apps/
details?id=edu.mit.appinventor.aicompanion3.

 

Figure 1.3 Building apps with an Android device and Wi-Fi connection



Educational App Development Toolkit for Teachers and Learners 9

Figure 1.4 QR code to download the Companion app from the Google Play Store

After downloading, follow the instructions to install the Companion app on your device. It 
will then be on your phone or tablet ready for you to use App Inventor.

NOTE: If you cannot use the QR code, use the Web browser on your device to go to the 
Google Play Store. Look for MIT AI2 Companion in the store. When you find Companion, 
click the Install button for the Companion app.

Step 2: Connect both your computer and your device to the SAME Wi-Fi Network

App Inventor will automatically show you the app you are building — but only if your 
computer (running App Inventor) and your Android device (running the Companion) are 
connected to the same Wi-Fi network. A more detailed explanation can be found at http://
appinventor.mit.edu/explore/support/explain-wifi-connection.html.

Step 3: Open an App Inventor project and connect it to your device

Go to App Inventor and open a project (or create a new one: choose Project > Start New 
Project and give your project a name). Choose Connect and then AI Companion from the 
dropdown menu in the AI2 browser as shown in Figure 1.5.

Figure 1.5 Connecting to AI Companion from AI2

A dialog with a QR code will appear on your computer monitor (Figure 1.6). On your 
device, launch the MIT App Companion app just as you would launch any app. Then 
click the Scan QR code button on the Companion and scan the code in the App Inventor 
window.



Educational App Development Toolkit for Teachers and Learners10

Figure 1.6 Connecting to your project using a QR code or six-character code

Within a few seconds, you should see the app you are building on your device. It will update 
as you make changes to your design and blocks, a feature called live testing.

If you have trouble scanning the QR code or your device does not have a scanner, type the 
six-character code shown on the computer into the Companion’s text area on your Android 
device exactly as shown.  Choose the orange Connect with code option. 

IMPORTANT: Do not hit Enter or make a carriage return. Type only the six characters and 
then press the orange button.

TROUBLESHOOTING

If your app does not appear on your device, the most likely problems are:

•	 You may have an outdated version of the App Inventor Companion app. Download the 
latest Companion app for App Inventor 2 from above.

•	 Your device may not be connected to Wi-Fi. Make sure you see an IP address at the 
bottom of the AI Companion app screen on your phone or tablet.

•	 Your device may not be connected to the same Wi-Fi network as your computer. Make 
sure both devices are connected to the same Wi-Fi network (check the network name).

•	 Your school or organisation may have network protocols in place that block the Wi-Fi 
connection. If this is the case, use App Inventor with the emulator or use a USB cable 
to connect your device.



Educational App Development Toolkit for Teachers and Learners 11

1.4.2 Building Apps with the Emulator

If you don’t have an Android phone or tablet handy, you can still use App Inventor. Have 
a class of 30 students? Let them work primarily on emulators (Figure 1.7) and share a few 
devices.

Figure 1.7 Using the emulator to build apps 

To use the emulator, you first need to install some software on your computer (this is not 
required for the Wi-Fi option). Follow the instructions below for your operating system.

IMPORTANT: 

•	 If you are updating a previous installation of the App Inventor software, see How to 
Update the App Inventor Software: http://appinventor.mit.edu/explore/ai2/update-
setup-software.html. 

•	 You can check whether your computer is running the latest version of the App Inventor 
software by visiting the App Inventor 2 Connection Test page: http://appinventor.mit.
edu/test.

Step 1. Install the App Inventor setup software

•	 Instructions for Mac OS X: http://appinventor.mit.edu/explore/ai2/mac.html

•	 Instructions for Windows: http://appinventor.mit.edu/explore/ai2/windows.html

•	 Instructions for GNU/Linux: http://appinventor.mit.edu/explore/ai2/linux.html

Step 2. Launch aiStarter (Windows and GNU/Linux only)

Using the emulator or a USB cable requires the use of a program named aiStarter. This  
program permits the browser to communicate with the emulator or USB cable.



Educational App Development Toolkit for Teachers and Learners12

On a Mac, aiStarter will start automatically when you log in to your account and will run 
invisibly in the background.

With Windows, there will be shortcuts to aiStarter from your Desktop, from the Start 
menu, from All Programs or from Startup Folder. If you want to use the emulator with 
App Inventor, you will need to launch aiStarter manually on your computer when you log 
in. You can start aiStarter by clicking the icon (Figure 1.8) on your Desktop or from your 
Start menu.

Figure 1.8 The aiStarter icon for Windows

You’ll know that you’ve successfully launched aiStarter when you see a window like the 
following (Figure 1.9):

Figure 1.9 aiStarter start-up window

On GNU/Linux, you’ll need to launch aiStarter manually from the following folder: /usr/
google/appinventor/commands-for-Appinventor

You can launch it from the command line with /usr/google/appinventor/commands-for-
appinventor/aiStarter &

For help with aiStarter, see Connection Help at http://appinventor.mit.edu/explore/ai2/
aistarter-help.html. 



Educational App Development Toolkit for Teachers and Learners 13

Step 3. Open an App Inventor project and connect it to the emulator

Go to App Inventor and open a project (or create a new one: Project > Start New Project 
and give your project a name). Then, from App Inventor’s menu (on the App Inventor 
cloud-based software at http://ai2.appinventor.mit.edu), go to the Connect menu and click 
the Emulator option as shown in Figure 1.10.

Figure 1.10 Connecting to the emulator from AI2

You’ll get a notice saying that the emulator is connecting. Starting the emulator can take a 
couple of minutes. You may see update screens like Figure 1.11 during the start-up.

Figure 1.11 Update screens during emulator start-up

The four phases of emulator start-up are shown in Figure 1.12. The emulator will initially 
appear with an empty black screen (1). The emulator is ready when you see a coloured 
background (2). Once the background appears, wait until the emulated phone has finished 
preparing its SD card: there will be a notice at the top of the phone screen while the card is 
being prepared. Once connected, the emulator will launch and show the app you have open 
in App Inventor.



Educational App Development Toolkit for Teachers and Learners14

Figure 1.12 The four phases of emulator start-up

NOTE: If this is the first time you are using the emulator after installing the App Inventor 
Setup software, you will see a message asking you to update the emulator.  Follow the 
directions on the screen to perform the update and reconnect the emulator. You will need to 
do this type of update whenever there is a new version of the App Inventor software.

1.4.3 Building Apps with an Android Device and USB Cable

Some schools’ and organisations’ firewalls block the type of Wi-Fi connection required. In 
that case, use a USB cable as shown in Figure 1.13.

Figure 1.13 Using a USB cable to build apps

When you use App Inventor with a phone or tablet, your device communicates with the 
App Inventor software running in your computer’s browser window. This communication is 
managed by the AI2 Companion App running on the device. See Step 2 (below) for how to 
install the AI Companion software. 



Educational App Development Toolkit for Teachers and Learners 15

NOTE: The Companion can communicate with your computer over a wireless connection. 
This is the method strongly recommended by the App Inventor team. It does not 
require any additional software to be installed on your computer. (See Section 1.4.1.)

There are, however, some environments where wireless connections won’t work. For 
example, some hotels, conference centres and schools configure their wireless networks 
to prohibit two devices on the network from communicating with each other. See http://
appinventor.mit.edu/explore/support/explain-wifi-connection.html for a short explanation. 
Some App Inventor users have solved this problem by purchasing a wireless router and 
setting up their own local network. (Also, most Macs and some PCs can serve as Wi-Fi 
routers that can handle a small number of machines.) However, if this is impossible, you can 
use App Inventor with a phone or tablet if you connect it to the computer with a USB cable.

Setting up a USB connection can be awkward, especially on Windows machines, which 
need special driver software to connect to Android devices. (This is not the case with Mac 
or Linux, which do not need special drivers.) Unfortunately, different devices may require 
different drivers, and, outside of a few standard models, Microsoft and Google have left it to 
the device manufacturers to create and supply the drivers. Therefore, you may have to search 
for the appropriate driver for your phone. App Inventor provides a test program that checks 
if your USB-connected device can communicate with the computer. You should run this test 
and resolve any connection issues before trying to use App Inventor with a USB cable on a 
device.

Here are the steps for using App Inventor with a USB cable.

Step 1: Download and install the App Inventor setup software

To connect with the USB, you need to first install the App Inventor setup software on your 
computer. Follow the instructions below for your operating system.

•	 Instructions for Mac OS X: http://appinventor.mit.edu/explore/ai2/mac.html

•	 Instructions for Windows: http://appinventor.mit.edu/explore/ai2/windows.html

•	 Instructions for GNU/Linux: http://appinventor.mit.edu/explore/ai2/linux.html

IMPORTANT: 

•	 If you are updating a previous installation of the App Inventor software, see How to 
Update the App Inventor Software at http://appinventor.mit.edu/explore/ai2/update-
setup-software.html.

•	 You can check whether your computer is running the latest version of the software by 
visiting the Connection Test Page: http://appinventor.mit.edu/test.



Educational App Development Toolkit for Teachers and Learners16

Step 2: Download and install the MIT AI2 Companion App on your phone

Open your device’s QR code scanner and scan the QR code (Figure 1.14) to download the 
Companion App from the Google Play Store. If you don’t have a QR code scanner installed 
on your device, you can download one for free from Google Play. QR Droid Code Scanner 
is one example (https://play.google.com/store/apps/details?id=la.droid.qr&hl=en).

Alternatively, follow this link from your device: https://play.google.com/store/apps/
details?id=edu.mit.appinventor.aicompanion3.

Figure 1.14 QR code to download the Companion app from the Google Play Store

After downloading, follow the instructions to install the Companion app on your device. It 
will then be on your phone or tablet ready for you to use App Inventor.

NOTE: If you cannot use the QR code, use the Web browser on your device to go to 
the Google Play Store. Look for MIT AI2 Companion in the store. When you find 
Companion, click the Install button for the Companion app.

Step 3. Launch aiStarter (Windows & GNU/Linux only)

Using the emulator or a USB cable requires the use of a program named aiStarter. This 
program permits the browser to communicate with the emulator or USB cable.

On a Mac, aiStarter will start automatically when you log in to your account and will run 
invisibly in the background.

With Windows, there will be shortcuts to aiStarter from your Desktop, from the Start 
menu, from All Programs or from Startup Folder. If you want to use the emulator with 
App Inventor, you will need to manually launch aiStarter on your computer when you log 
in. You can start aiStarter by clicking the icon (Figure 1.15) on your Desktop or from your 
Start menu.

Figure 1.15 The aiStarter icon for Windows



Educational App Development Toolkit for Teachers and Learners 17

To launch aiStarter using Windows, double-click on the icon. You’ll know that you’ve 
successfully launched aiStarter when you see a window like the following (Figure 1.16):

Figure 1.16 aiStarter start-up window

On GNU/Linux, you’ll need to launch aiStarter manually from the following folder: /usr/
google/appinventor/commands-for-Appinventor 

You can launch it from the command line with /usr/google/appinventor/commands-for-
appinventor/aiStarter &

For help with aiStarter, see http://appinventor.mit.edu/explore/ai2/aistarter-help.html.

Step 4: Set up your device for USB (turn USB Debugging on)

On your Android device, go to System settings then Developer options. Turn on 
Developer options and be sure that USB debugging is allowed.

On most devices running Android 3.2 or older, you can find this option under Settings > 
Applications > Development.

On Android 4.0 and newer, it’s hidden by default. To make it available, go to System 
settings > About phone > Software information and tap Build number seven times. 
Return to the previous screen to find Developer options, including USB Debugging.

Step 5: Connect your computer and device, and authenticate if necessary

Connect your Android device to the computer using a USB cable. Be sure that the device 
connects as a mass storage device (not media device) and that it is not mounted as a 
drive on your computer. You may have to go to the Finder (on a Mac) or My Computer 
(on Windows) and disconnect any drive(s) that were mounted when you connected your 
Android device.



Educational App Development Toolkit for Teachers and Learners18

NOTE: On Android 4.2.2 and newer, the first time you connect your device to a new 
computer the message “Allow USB Debugging?” will pop up. Press OK. This authenticates 
the computer to the device, allowing the computer to communicate with it. You’ll need to 
do this for each computer you want to connect to the device, but only once per computer.

Step 6: Test the connection

Go to the Connection Test page at http://appinventor.mit.edu/test to see if you get a 
confirmation that your computer can detect the device.

TROUBLESHOOTING: If the test fails, go to General Connection Help at http://
appinventor.mit.edu/explore/ai2/connection-help.html and choose the USB help option for 
your computer (Windows or Mac). You won’t be able to use App Inventor with the USB 
cable until you resolve the connection issues.



Educational App Development Toolkit for Teachers and Learners 19

2 Activities 
You are now ready to start building Android apps on AI2. The Activities and Tutorials are 
designed to give you hands-on training in most of the basic components available on AI2 for 
app development. The Activities are smaller apps that will have only one or two functions. 
The Tutorials are considerably more sophisticated apps with several interrelated functions. 
You should complete all the Activities before attempting the Tutorials. 

Walkthrough:

Start a new project for each Activity/Tutorial. Name the project accordingly. Click on  
Screen 1 on the Designer view to change the Properties of the app such as Title and 
Description. Drag and drop the Components from the Palette onto the Viewer to build 
the user experience (UX) of your application (Figure 2.1). If you have configured Live 
Testing, you should now be able to see your app take shape on your Android device or 
emulator.

Figure 2.1 Using the Palette, Viewer and Properties in Designer view

Once you have designed the look and feel of your app on the Viewer, you need to build the 
logic of the application. This is done using the Blocks view. Click on the Blocks button to 
access the Blocks view (Figure 2.2). 



Educational App Development Toolkit for Teachers and Learners20

Figure 2.2 Using the Blocks drawers in Blocks view

Find the blocks needed to build your application from the Built-In Drawers and the 
Component-Specific Drawers. Drag and drop the blocks onto the empty space in the 
Viewer to build your logic. If the blocks fit each other, they will snap together. To delete a 
block, press DEL or drag and drop the block into the trash can. 

You can download the resources — images, audio files, etc. — for the activities and tutorials 
from the Resources link in each Activity/Tutorial sheet. All Resources for the Activities and 
Tutorials are available at https://goo.gl/Abz5BX.



Educational App Development Toolkit for Teachers and Learners 21

Activity 1: TextToSpeech (Loud Mouth)

COL_LoudMouth

Loud Mouth

This app speaks out the text typed into the TextBox using 
the TextToSpeech component.

https://goo.gl/8HdAIJ

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners22

Blocks

Walkthrough:

1.	 Log in to your AI2 account at http://ai2.appinventor.mit.edu. 

2.	 Click on the Start new project button (Figure 2.3) to begin a new project.

Figure 2.3 Click on the Start new project button to open a new AI2 project

Expected 
Learning 
Outcomes

Components  
& Attributes

Hint: Type something

		

			 
Text: Speak

By the end of this activity you should be able to:			

	 •  Add components into the Designer 
	 •  Use the Blocks editor 
	 •  Add a TextBox and Button to the interface 
	 •  Use the Non-visible TextToSpeech component 
	 			 



Educational App Development Toolkit for Teachers and Learners 23

3.	 Name the project according to the project name (Figure 2.4) given in the Activity sheet. 
In this case, the project name is COL_LoudMouth. You can name your project any way 
you like as long as it contains only alphanumeric characters and underscores. You cannot 
include spaces in your project name (although you can use them in the app name). 
It is also good programming practice to use CamelCase notation as your naming 
convention. This is the practice of using uppercase letters to indicate the beginning 
of each new word. More details on CamelCase notation can be found at https://
en.wikipedia.org/wiki/CamelCase.

Figure 2.4 Name your project using the project name provided in the activity sheet

4.	 Once you have created the new project, you will enter the Designer view inside AI2. 
The project name will be displayed as shown in Figure 2.5.

Figure 2.5 The project name is displayed inside the AI2 project

5.	 A blank phone screen will be visible within the Designer view as shown in Figure 2.6. 
This represents what the user sees on their Android mobile phone/tablet screen. You will 
be developing the visual aspects of your app on this blank screen. Notice that the screen 
indicates the Wi-Fi status, signal and battery strength, and time at the top just like the 
screen of an Android mobile device.



Educational App Development Toolkit for Teachers and Learners24

Figure 2.6 Blank phone screen used to develop the visual aspects of the app

6.	 It is good practice to start your Live Testing at this point so that you are aware of how 
your app is taking shape on the actual device. Since you already know how to set up and 
start Live Testing from Section 1, you can select which type of testing you want to do (AI 
Companion, Emulator or USB) from the Connect menu. Once you have connected to 
your phone or the emulator, you will see the empty phone screen shown in Figure 2.6 on 
your device.

7.	 Note that Figure 2.6 displays the words “Screen 1” on the top of the phone screen. This 
is usually the app title. The AI2 platform uses the title Screen 1 by default. Change it to 
the app name given in the Activity sheet. In this case, Loud Mouth. To do this, click on 
the grey strip that displays the title then navigate to Properties on the far right. Here 
you will first see an empty text box called AboutScreen at the very top of the pane. This 
is the information the user will see when the app is being installed on their device or 
when they check the app in the installed apps list. You will need to provide a meaningful 
description for your app in this section. For the purposes of this toolkit, use the app 
description in the Activity sheet (Figure 2.7). Scroll down the Properties pane to locate 
the Title text box and change the title from Screen 1 to Loud Mouth. You will now see 
that the title on the phone screen has changed to Loud Mouth as shown in Figure 2.8.		

			   Figure 2.7 Provide a meaningful description of the app



Educational App Development Toolkit for Teachers and Learners 25

Figure 2.8 Change the title of the app

8.	 Now you are ready to build your first app. To do this, you will need to use three 
components as shown in the Components and Attributes section of the Activity 
sheet. Navigate to the Palette located on the left of the screen and look for the first two 
components, TextBox and Button, as shown on Figure 2.9.

Figure 2.9 Locate the TextBox and Button components

9.	 Drag and drop the TextBox followed by the Button onto the blank phone screen as shown 
in Figure 2.10. You will immediately see these components on your Live Test device.

Figure 2.10 Drag and drop TextBox and Button onto the blank phone screen

10.	Now locate the TextToSpeech component located inside the Media drawer within the 
Palette as shown in Figure 2.11. Drag and drop it onto the phone screen as you did with 
the TextBox and Button components. Note that the TextToSpeech component does not 
appear on the phone screen. This is because it is classified as a non-visible component. 
These components are invisible to the user. They do a certain task in the background. You 
will see these non-visible components at the bottom of the phone screen outside the visible 
area as shown in Figure 2.12.



Educational App Development Toolkit for Teachers and Learners26

 
Figure 2.11 TextToSpeech component located within the Media drawer of the Palette

Figure 2.12 Non-visible components shown outside the visible area of the phone screen



Educational App Development Toolkit for Teachers and Learners 27

11.	Now that you have all the components on the screen, it’s time to change their 
Properties according to the Components and Attributes section of the Activity 
sheet. The words “properties” and “attributes” mean the same thing. First click on the 
TextBox on the phone screen. This will highlight the component. Now navigate to the 
Properties section as you did in Step 7. Scroll down to find the property Hint and 
change it to “Type something…” as shown in Figure 2.13. This property gives the user a 
hint about what to do with the textbox inside the app. You will now see the words “Type 
something…” in light grey within the TextBox of your Live Test device. When you click 
on the TextBox on the Live Text device this message will disappear, allowing the user to 
type some text on the virtual keyboard. Note that the Hint is only a guide to the user. It 
is not the contents of the TextBox. The user has to type something into the TextBox for 
the app to work.

Figure 2.13 Change the Hint property of the TextBox component

12.	Now click on the Button component on the phone screen in Designer view to change 
its properties. Locate the property Text and change it to “Speak.” You will see that the 
text on the button face has changed from “Text for Button 1” to “Speak” (Figure 2.14).

Figure 2.14 Change the Text property of the button to “Speak”

13.	No property changes are mentioned in the Activity sheet for the TextToSpeech 
component, so leave the default properties as they are.

14.	Congratulations! You have finished building the visual design of your first app. You will 
be able to see it on your Live Test device. However, nothing happens when you press 
the Speak button, because you need to build the logic that drives the app. This is done 
using the Blocks view. You can change between the Designer and Blocks views using 
the two buttons located on the far top right (Figure 2.15).



Educational App Development Toolkit for Teachers and Learners28

Figure 2.15 Use the Designer and Blocks buttons to change between the Designer view and the Blocks view

15.	For the app to work, you need to build the logic block given under the Blocks section of 
the Activity sheet. In this case, the block is as shown in Figure 2.16.

Figure 2.16 The logic block for the LoudMouth app

16.	The logic blocks in AI2 are extremely high level in terms of programming. That means 
that the programming is done using logic that can be built using our own human  
language (not machine language). You will need to get into the habit of building 
sentences of what you want the app to do before building the logic blocks. Imagine that 
you are explaining to a user what the app does. In this case, your explanation will be 
something like:

The user will enter some text into the text box. When the Speak button is clicked, the app will 
speak out the text the user has entered.

	 Considering the above, the app will not have to do anything with respect to the user 
inputting some text into the TextBox. That is an activity under the user’s control. The 
app only needs to act when the Speak button is pressed. Then the app needs to get the 
text from the TextBox, convert it to speech and play it back through the speaker. This is 
the part we need to build with the logic blocks.

	 Now let’s make it a bit more specific with component names. Note that AI2 assigns a 
number to the default name of each component. The first component will be named 
XX1. For example, the first button dragged and dropped into the screen will be Button1 
and the second will be Button2. The first text box will be TextBox1, and so forth. You 
can change the names of these components so that they make more sense when building 
logic blocks. We will look at that in a later Activity. For now, let’s stick to the default 
component names.



Educational App Development Toolkit for Teachers and Learners 29

	 The app needs to do the following:

When Button1 is Clicked, TextToSpeech1 reads the Text inside TextBox1 as the Message and 
Speaks it out.

	 Pay special attention to the nouns and verbs underlined in the above sentence. These are 
what we need to build within our logic block.

17.	Find Button1 from the Blocks section on the left of the Blocks view. Click on Button1 
to open the blocks drawer for the Button1 component. Locate the When Button1.
Click do block. Drag and drop it into the blank space in the Blocks view as shown in 
Figure 2.17. Note that blocks are non-visible components and will not show on the Live 
Test phone screen. However, you will be able to use the functionality on the Live Test 
device as soon as a complete block is built.

Figure 2.17 Click on Button1 in the Blocks section and drag and drop the when Button1. 
Click do block into the empty space.

18.	Similarly, click on TextToSpeech1 to locate the call TextToSpeech1.Speak block.  
Drag and drop it into the groove in the when Button1.Click do block as shown in 
Figure 2.18. You should hear a clicking sound as the two blocks snap together. 

NOTE: Only compatible blocks will snap together in this way. If two blocks don’t snap 
together, your logic is faulty.



Educational App Development Toolkit for Teachers and Learners30

Figure 2.18 Join the two blocks so they click together

19.	Finally, click on TextBox1 and drag and drop the TextBox1.Text block so that it fits the 
groove in the call TextToSpeech1.Speak message block and they snap together as 
shown in Figure 2.19.

Figure 2.19 Join all three blocks to make the logic of your app

20.	Congratulations! You have just built your first Android app with zero programming. You 
can now test the app on your Live Test device. Type the text “Hello World. I just built 
my first Android app” into the TextBox and hit the Speak button to see what happens.



Educational App Development Toolkit for Teachers and Learners 31

•  MinimumInterval: 1000

•  Pitch: 2.0

Activity 2: AccelorometerSensor (Stop Shaking Me)

COL_StopShakingMe

Stop Shaking Me

This app uses the AccelormeterSensor to detect if the phone 
is moving or shaking. When you shake the phone it will ask 
you to stop shaking it.

https://goo.gl/85u95x

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Expected 
Learning 
Outcomes

By the end of this activity you should be able to:		

•  Use the AccelerometerSensor to detect phone movement 
	 			 

Components  
& Attributes

Blocks



Educational App Development Toolkit for Teachers and Learners32

Walkthrough:

1.	 Having developed your first Android app, to convert text to speech, you must be 
eager to develop your second one. This app is not too different from the Loud Mouth 
application with respect to the functionality and setup. However, one major difference 
is that there are no visual components in this app — that is, all the components are 
non-visible components. Therefore, the user will only see a blank white screen on their 
Android device. You might think that an app needs some form of visual component. 
However, the modern concepts of app design tend to concentrate on your other 
senses as well as sight.  For example, much emphasis is put on the auditory and tactile 
components of the user experience (UX) in games. This is of special interest to mobile 
device users who have some form of disability. You as a developer need to ensure that 
your app is accessible to as many users as possible.  

2.	 You are now familiar with the process of locating components from the Palette. Drag 
and drop the AccelerometerSensor component, which is in the Sensors drawer of 
the Palette, onto the phone screen. You already know where to find the TextToSpeech 
component from the previous activity.

3.	 Change the MinimumInterval property of the AccelerometerSensor to 1000. Note 
that time-related properties in AI2 are set in milliseconds — that is, when you set the 
property to 1000, the AccelerometerSensor checks the movement of the phone every 
second.  

4.	 Set the Pitch property of the TextToSpeech component to 2.0. You can set a value 
between 0 and 2. Lower values give a lower pitch to the voice while higher values 
give it a higher pitch. Note that you can find out more about each component and 
its properties by putting your cursor on the question mark (?) located next to each 
component in the Palette. A popup (Figure 2.20) will not only give you an indication 
of what the component does but will also give you a link to more information at the AI2 
website, which lists helpful details about all the properties you can set.



Educational App Development Toolkit for Teachers and Learners 33

Figure 2.20 More information popup for the TextToSpeech component

5.	 It is very important that you continue to practise the skill of explaining the 
functionality of an app using simple English. This helps in building logic blocks that are 
programmatically sound. Let’s try to explain the functionality of this app to a user:

When you shake the phone it will speak to you and ask you to stop shaking it.

Now let’s put it in a more logical manner:

When AccelorometerSensor1.Shaking do XYZ

NOTE: Many programming languages use the dot operator. It means words like “is” and 
“are” (which are called stop words) are replaced with a more machine-friendly format 
separated by a DOT “.” Furthermore, the do is a more definitive way of indicating what 
action is taken as a result. For example, “I eat when I’m hungry” can be reworded more 
precisely as “When I’m Hungry do Eat.”

Now, in the context of this app, XYZ means “Speak out the words ‘Stop shaking me.’” 
Therefore, the logic can be written as follows:

When AccelorometerSensor1.Shaking do (Speak out the words “Stop shaking me”)

This translates to the block in the Activity sheet as shown in Figure 2.21.

Figure 2.21 The logic block for the Stop Shaking Me app



Educational App Development Toolkit for Teachers and Learners34

Since this app is very similar to the Loud Mouth app, I’m sure you can assemble the [when 
AccelorometerSensor1.Shaking] block and the [call TextToSpeech1.Speak] blocks. 
The only difference is that you will be replacing the user input read through a TextBox with 
a static piece of text. To do this you need to use a block from the Built-in blocks, which 
are predefined blocks. Click on the Text and select the first block, which is an empty Text 
block, and join it with the [call TextToSpeech1.Speak] block as shown in Figure 2.22.

Figure 2.22 Using an empty Text block

6.	 Now you have to fill in some text in the empty Text block. Just click on the empty box 
in the middle and type “Stop shaking me.”

7.	 Congratulations! You just finished your second app. Give the phone a shake and see 
what happens. You can modify the Pitch of the TextToSpeech component to go from 
a male voice to a female voice. I hope you are using an actual Android device for your 
Live Testing because it is almost impossible to shake an emulator.



Educational App Development Toolkit for Teachers and Learners 35

Activity 3: SpeechRecognizer (Dictation)

COL_Dictation

Dictation

This app uses the SpeechRecognizer component to take 
dictation from you.

https://goo.gl/XYCiqM

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners36

Blocks

•  AlignHorizontal: Center

•  Text: 

•  Image: microphone73.png

•  Hint: Your dictation appears here…

•  Width: Fill parent

•  Height: Fill parent

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use the SpeechToText component 
•  Apply an image to a button 
•  Manipulate Height, Width and Align attributes 
•  Concatenate text strings using Join



Educational App Development Toolkit for Teachers and Learners 37

Walkthrough:

1.	 You learned how to change the Title of the Screen1 component in the Loud Mouth 
app. However, the component name remains Screen1. You might now wonder if a 
single app could have multiple screens because they are named 1, 2, 3… Yes, a single 
app can have many screens, but that is beyond the scope of this toolkit. You can develop 
extremely powerful apps with just one screen — as you will realise once you start the 
Tutorials.

Just as you changed the Title and AboutScreen properties of Screen1, set the 
AlignHorizontal property to Center, which will ensure that all components on 
the screen will horizontally align to the centre of the screen, unlike the Loud Mouth 
app where the componen]ts were aligned to the left by default. The dropdown 
alignment menu gives you the options of left, center and right. The properties for the 
AlignVertical property are top, center and bottom.

2.	 You learned how to change the text of a Button component. Now you will learn how 
to change the Image attribute, which is what you will use for almost all of your future 
apps. The Image attribute sets an image file such as a .jpeg or .png as the background 
of a Button. In this case it uses the file microphone73.png which is available in the 
Resources pack (see the Resources section of the Activity sheet). Once you have 
downloaded the Resources pack, extract it to a convenient location. Then use the Image 
property of Button1 to upload the Image onto the AI2 server as shown in Figure 2.23.

Figure 2.23 Upload an image from the Resources pack

3.	 Button1 will now display the image of a microphone. However, you will still have “Text 
for Button1” in the middle. To remove this, just keep the Text property empty.

4.	 You will find the SpeechRecognizer component inside the Media drawer of the 
Palette. This is an app with two independent logic blocks. Build the first logic (Figure 
2.24) block as follows:



Educational App Development Toolkit for Teachers and Learners38

When Button1.Click, capture the speech of the user until the user stops speaking.

Figure 2.24 The first logic block, which captures the user’s speech

5.	 Since this is a dictation app, the app is supposed to record a long speech sentence by 
sentence, just like a secretary would do. Therefore, any new sentence spoken into the app 
needs to be appended to the previous sentences. So the logic needs to be:

When the user has stopped speaking, append the new text to the existing.

	 This is done using the block shown in Figure 2.25.

Figure 2.25 Appending text to the existing text when the user has stopped speaking

6.	 Two aspects will be new to you. The first is how to increase the number of grooves in 
the join block located within the Text drawer of the Built-in blocks. Click on the blue 
square. This will give you the option of adding or deleting as many grooves as you want 
as shown in Figure 2.26. To add a groove, just drag and drop a block into the 
join block. To remove a groove just select one and press DEL.

Figure 2.26 Adding and deleting grooves in a join block



Educational App Development Toolkit for Teachers and Learners 39

7.	 The second aspect would be how to get the [get result] block from the [when 
SpeechRecognizer.AfterGettingText do] block. Just put your cursor on (but do 
not click) the Result parameter of the [when SpeechRecognizer.AfterGettingText 
do] block. This will result in a popup as shown in Figure 2.27. Just drag out the 

block and use it. This block holds the text that was spoken by the user. 
The Result parameter is referred to as the return value of the [SpeechRecognizer.
AfterGettingText] block. A single block could have multiple return values.

Figure 2.27 Getting the result in a SpeechRecognizer.AfterGettingText block

8.	 Congratulations! That’s app number 3. Give it a go on your Live Test device. You should 
be able to dictate your speech while the app converts it to text which can be emailed 
or texted as you wish. If you are using an emulator, make sure you have a microphone 
connected to your PC.

In the Resources:

“microphone73” by Sebastien Gabriel http://sebastien-gabriel.com from www.flaticon.
com is licensed under Creative Commons BY 3.0 http://creativecommons.org/licenses/
by/3.0.



Educational App Development Toolkit for Teachers and Learners40

Activity 4: Canvas (Join the Dots)

COL_JoinTheDots

Join The Dots

This app allows you to draw a picture by joining the dots 
on a Canvas component.

https://goo.gl/JQMOLo

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners 41

Blocks

•  BackgroundImage: pattern.png

•  Width: Fill parent

•  Height: Fill parent

•  PaintColor: Red

•  Text: Clear

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use the Canvas component 
•  Set a Canvas BackgroundImage 
•  Detect dragging of a finger on the screen



Educational App Development Toolkit for Teachers and Learners42

Walkthrough:

1.	 The Canvas component found under the Drawing and Animation drawer of 
the Palette is an important component when it comes to mobile apps. This is the 
component that facilitates creative aspects of an app, including game design. With the 
gamification of education taking centre stage in many forums, mastering the Canvas 
component will allow you to build apps that reflect the latest trends.

2.	 When considering the properties of the Canvas, make it fill the device screen so that 
the game play is in full screen. To achieve this, you will need to set the Height and 
Width properties to Fill parent.  The other settings are Automatic, where the device 
determines the dimensions, or the Custom setting, should you specify the number of 
pixels. The Custom setting should be used sparingly as you want your app to be used 
on multiple devices of varying dimensions. The Fill parent setting ensures that your 
component fits any screen regardless of dimensions.

3.	 Loading a BackgroundImage for a Canvas is the same as loading an Image for a 
Button. The PaintColor is the colour of the lines you will be drawing on the Canvas. 
You can get more info by clicking on the “?”

4.	 The Dictation app taught you how to get results from a block that had return values. 
This one is no different. Just make sure you don’t click.

5.	 Complete the block and test your app.

	



Educational App Development Toolkit for Teachers and Learners 43

Activity 5: Ball and ImageSprite (Move the Ball)

COL_MoveTheBall

Move The Ball

This app uses a ball and an ImageSprite to simulate a golf 
game. The ball needs to be flung towards the hole. If the 
ball hits the hole the app will say “Hit.”

https://goo.gl/cfnhh1

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners44

•  ScreenOrientation: Portrait

•  BackgroundColor: Green

•  Width: Fill parent

•  Height: Fill parent

•  PaintColor: Red

 •  Radius: 7

•  Picture: golf25.png

•  Source: Sv-hit.ogg

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use the Canvas component 
•  Set a Canvas BackgroundImage 
•  Detect dragging of a finger on the screen



Educational App Development Toolkit for Teachers and Learners 45

Blocks



Educational App Development Toolkit for Teachers and Learners46

Walkthrough:

1.	 The ScreenOrientation property of the Screen component determines the orientation 
of the app on the device screen. Usually it is set to Unspecified, which lets the device 
decide how the app is displayed on the screen according to the settings of the screen. 
The property Sensor specifically instructs the app to reorient itself based on the sensor 
direction of the device. The User property allows the user to select the orientation of 
the app. If you want to lock the orientation of an app, you can use the Portrait and 
Landscape properties to instruct the app to stay in one orientation regardless of the 
device orientation. In this case, you will be choosing Portrait.

2.	 The Ball component and the ImageSprite component are the key components used to 
build any animation or game on the AI2 platform. They are located in the Drawing and 
Animation drawer of the Palette. Change the PaintColor and Radius of the ball to 
suit the app. Set the Picture of ImageSprite1 to golf25.png (in the Resources pack).

3.	 The Player component located in the Media drawer of the Palette is used to play back 
sound clips such as music or alert sounds. For shorter sound clips you can also use the 
Sound component. However, the Sound component is not compatible with all Android 
devices. Therefore, it is safer to always use the Player component in your apps. Set the 
Source property of Player1 to Sv-hit.ogg (in the Resources pack).  

4.	 This app has multiple aspects and cannot be explained in a single sentence. The 
description of the app will be as follows:

The ball and hole will appear in a random location on the screen when the app starts for the first 
time. The ball needs to be flung towards the hole. If the ball hits the hole the app will say “Hit.” 
The location of the hole and the ball are re-set to random locations each time the ball hits the 
hole.

5.	 To build the logic blocks for the app you will need to break the app description 
into individual sentences as follows:

The ball and hole will appear in a random location on the screen when the app starts for the first 
time.

	 Since you will be resetting the location of the ball and the hole to random locations 
multiple times, it makes sense to create one logic block that can be reused. This is a core 
concept in object oriented programming (OOP). To achieve this, you will use a [to 
Procedure do] located in the Procedures section within the Built-in blocks (Figure 
2.28). When you write large apps you will be using many Procedures. In order to keep 
track of them you need to name them in a sensible manner. Usually the name will reflect 
what the procedure will do. In this case, name the Procedure SetBallAndHole as shown 
in Figure 2.29.



Educational App Development Toolkit for Teachers and Learners 47

Figure 2.28 Creating a new procedure

Figure 2.29 Renaming a procedure

6.	 You now need to build the logic blocks for the Procedure SetBallAndHole as shown 
in Figure 2.30. Use the [call Ball1.MoveTo] block and [call ImageSprite1.MoveTo] 
blocks to set the locations of the Ball and the ImageSprite.  

Figure 2.30 Procedure for randomly setting the positions of the Ball and the Hole

	 To set the X and Y coordinates to random values, use the [random integer from xx 
to xx] block located in the Math section of the Built-in blocks (Figure 2.31). Note 
how the blocks from each section of the Built-in blocks are colour-coded — the Math 
blocks are light blue, Text blocks maroon and Procedure blocks purple. This colour 
coding will help you to locate blocks easily within your app.



Educational App Development Toolkit for Teachers and Learners48

Figure 2.31 Using the random integer block in the Math section

	 The Ball and the Hole need to appear within the boundaries of the device screen. They 
will be invisible if they go beyond that. Since you are building the app for multiple 
devices with various screen sizes, you cannot define the bounds as an exact number. The 
coordinates (1,1) always represent the top left-hand corner of the  
device. You need to set the maximum X value and maximum Y value from there.  
To do this, click on  and press DEL. Fill the space with and  

blocks as shown in Figure 2.30. Now you have built your  
Procedure.

7.	 You need to set the locations of the Ball and Hole at app starting. This is achieved using 
the [when Screen1.Initiate do] block (Figure 2.32). This block is the first block 
executed when the app is launched. The [call SetBallAndHole] block is used to execute 
the SetBallAndHole Procedure. This block is located inside the Procedures section.

Figure 2.32 Calling a procedure at Screen Initialize

	 You have now built the logic for the sentence: 

The ball and hole will appear in a random location on the screen when the app starts for the  
first time.

8.	 The second sentence is as follows:

The ball needs to be flung towards the hole.

	 You will use the [when Ball1.Flung do] block (Figure 2.33) to determine what 
happens to the ball when it is flung on the screen by the user’s finger. Use the return 
value  to set the direction of the Ball. 

 
 



Educational App Development Toolkit for Teachers and Learners 49

 
Figure 2.33 The block to determine what happens when the Ball is flung by the user

	 The Speed at which the user flings the Ball can be set from the  return 
value. As this is a small number, use a multiplication block from the Math section to 
multiply the speed by a factor of 10 before setting it as the Speed of the Ball. This will 
ensure that the ball moves fluidly when the user flings it.

	 To stop the Ball at the edge of the screen, build the block shown in Figure 2.34. If you 
want the Ball to bounce back off the edge of the screen, build the logic block as shown 
in Figure 2.35. 

Figure 2.34 Moving the Ball back inside the bounds of the screen

Figure 2.35 Making the Ball bounce back off of the edge of the screen

9.	 Now you need to build the logic block for the third and final sentences:

If the ball hits the hole the app will say “Hit.” The location of the hole and the ball are re-set to 
random locations each time the ball hits the hole.

	 This is achieved using the [when Ball1.CollidedWith do] block. We need to check 
whether the Ball has collided with the Hole. This is determined by the other parameter 
of the block. Set it to ImageSprite1. The Player will play the sound clip once a 
collision takes place. Once the player has stopped, the SetBallAndHole procedure resets 
the locations.



Educational App Development Toolkit for Teachers and Learners50

Figure 2.36 Detecting a collision between the Ball and the ImageSprite

10.	Congratulations! You have now mastered the Canvas component. Now it’s time to play 
some golf.

In the Resources:

“golf25.png” by Yannick http://yanlu.de from www.flaticon.com is licensed under Creative 
Commons BY 3.0. http://creativecommons.org/licenses/by/3.0. 

“Sv-hit.ogg” by M. Kihlstedt, N. Vion (The Shtooka Project) [CC BY 2.0 fr (http://
creativecommons.org/licenses/by/2.0/fr/deed.en)], via Wikimedia Commons. http://
upload.wikimedia.org/wikipedia/commons/3/32/Sv-hit.ogg.



Educational App Development Toolkit for Teachers and Learners 51

Activity 6: TinyDB, PhoneNumberPicker and 
PhoneCall (Call a Friend)

COL_CallAFriend

Call A Friend

This app uses the PhoneNumberPicker and a TinyDB to 
store a contact in a list and make a phone call to a contact 
from that list.

https://goo.gl/LvFem0

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners52

By the end of this activity you should be able to:	

•  Use nested Layout components to achieve a complex 
look and feel in the interface

•  Use the PhoneNumberPicker to select a contact from the 
phone’s address book

•  Save, retrieve and delete tag-value pairs from the TinyDB

•  Populate a ListPicker using a TinyDB

•  Make a call using the PhoneCall component

•  AlignHorizontal: Right

•  Width: Fill Parent

 

•  Image: picture-add-icon.png

Expected 
Learning 
Outcomes

Components  
& Attributes



Educational App Development Toolkit for Teachers and Learners 53

Blocks

 

•  Image: Address-Book-icon.png 

•  Text: Name 

•  Text:  

•  Text: Name 

•  Text: 

•  Image: picture-remove-icon.png  

•  Image: app-phone-icon.png

Components  
& Attributes 
(cont’d)



Educational App Development Toolkit for Teachers and Learners54

Walkthrough:

1.	 How your app looks on a user’s phone determines most of the app’s success, so it is 
very important to pay attention to its theme, icons, wording, colour scheme and layout. 
Your app also needs to be consistent — it should look the same on any phone or tablet 
regardless of the make, model or screen size. To achieve this consistency, you will be using 
the components found in the Layout drawer of the Palette. The  
component aligns other components vertically on the screen as shown in Figure 2.37. 
You can align the components within the VerticalArrangement by manipulating the 
Properties of the component as shown in Figure 2.38.



Educational App Development Toolkit for Teachers and Learners 55

Figure 2.37 The VerticalArrangement component

Figure 2.38 Properties of the VerticalArrangement component

	 The  arranges the components horizontally across the screen as 
shown in Figure 2.39. As with the VerticalArrangement, you can align the components 
within the HorizontalArrangement by manipulating the Properties of the component. 

 

 



Educational App Development Toolkit for Teachers and Learners56

Figure 2.39 The HorizontalArrangement component

2.	 The PhoneNumberPicker and PhoneCall components are located inside the Social 
drawer of the Palette. The PhoneNumberPicker is used to pick the details of a 
contact from the phone’s contacts list. The following properties can be manipulated once 
the contact has been picked from the list:

•	 ContactName: the contact’s name

•	 PhoneNumber: the contact’s phone number

•	 EmailAddress: the contact’s email address

•	 Picture: the name of the file containing the contact’s image, which can be used as a  		
	 Picture property value for the Image or ImageSprite component.

	 More details about the PhoneNumberPicker can be found at http://ai2.appinventor.mit.
edu/reference/components/social.html#PhoneNumberPicker

	 The PhoneCall component is a non-visible component that is used to dial out a particular 
number. It is normally used with a PhoneNumberPicker component. More details on 
the PhoneCall component can be found at http://ai2.appinventor.mit.edu/reference/
components/social.html#PhoneCall

3.	 Another component you are encountering for the first time is the Label component 
inside the User Interface drawer of the Palette. Labels are widely used in apps to 
display static text. The Text property of the Label cannot be changed by the user (unless 
the app wants the user to do so). It is always set or changed by the app. Labels are 
normally used to describe a field — for example, what the user needs to enter into a 
TextBox.

4.	 Note that two of the Labels and the two Buttons have been renamed lblName, 
lblPhoneNo, btnRemove and btnCall. This makes it much easier for you to identify 
the components when you are building the logic blocks. To rename a component, select 
it from the Components list in the Designer view. Then press Rename at the bottom 
of the pane (Figure 2.40). Type the new name in the popup window and press OK. This 
action will rename the component and all associated blocks with the new name you have 
provided. Additionally, you can select a component and press Delete at the bottom of the 
pane to remove it from your project.

IMPORTANT: Be careful when you do this as it will also delete all associated logic blocks 
you have built. 



Educational App Development Toolkit for Teachers and Learners 57

NOTE: When renaming, prefixes such as lbl — short for “Label” — and btn — short for 
“Button”—  are used. These are standard naming conventions used in programming. It 
is good practice to follow these conventions in your apps.

Figure 2.40 Renaming a component

5.	 When you are developing your apps, you will find a constant need to store data in a 
database that can be accessed later. If you store a value using a Variable block built 
using the blocks inside the Variables section of the Built-in blocks in Blocks view, 
you will only be able to use that value during the execution of your app. Say, for 
example, you want to store the highest score of a game you have developed and display 
it. You can do this using a Variable block such as the one shown in Figure 2.41. This 
will work fine until you are running the app. However, once you exit the app the high 
score value is lost — that is, the next time you open the app, the high score value would 
be initialised to 0. 

Figure 2.41 Using variables to store and display a value



Educational App Development Toolkit for Teachers and Learners58

	 To be able to recall a value even after the app has been restarted, you will need to use a 
database. There are four different types of non-visible components available for storing 
information under the Storage drawer of the Palette. The components are as follows:

•	 File: Non-visible component for storing and retrieving files. Use this component to 
write or read files on your device. The default behaviour is to write files to the private 
data directory associated with your app. The Companion writes files to /sdcard/
AppInventor/data for easy debugging. If the file path starts with a slash (/), then the 
file is created relative to /sdcard. For example, writing a file to /myFile.txt will write 
the file in /sdcard/myFile.txt. 

·	 For more information on this, see http://ai2.appinventor.mit.edu/reference/
components/storage.html#File 

•	 FusionTablesControl: A non-visible component that communicates with Google 
Fusion Tables. Fusion Tables let you store, share, query and visualise data tables; this 
component lets you query, create and modify these tables.

·	 For more information on this, see http://ai2.appinventor.mit.edu/reference/
components/storage.html#FusionTablesControl 

•	 TinyDB: Non-visible component that stores data for an app. TinyDB is a persistent data 
store for the app. The data stored in a TinyDB will be available every time the app is 
run. Data items are strings stored under tags. To store a data item, you specify the tag it 
should be stored under. You can then retrieve the data that was stored under a given tag.

·	 For more information on this, see http://ai2.appinventor.mit.edu/reference/
components/storage.html#TinyDB 

•	 TinyWebDB: Non-visible component that communicates with a Web service to store 
and retrieve information.

·	 For more information on this, see http://ai2.appinventor.mit.edu/reference/
components/storage.html#TinyWebDB 

	 This toolkit only uses the TinyDB component, which is the most commonly used 
component for storing data in the persistent storage component of the mobile device. 
You will use the other storage components when you start developing complex 
applications that require real-time data. 

6.	 The TinyDB component stores information using a Tag-Value pair concept. In this 
particular app, we are using the TinyDB to store the Name and Phone Number of a 
contact — that is, the Tag will be the Name and the Value will be the Phone Number. 
Say, for example, we want to store John’s phone number. The Tag-Value pair would be 
John-5552223331.



Educational App Development Toolkit for Teachers and Learners 59

	 The [call TinyDB1.StoreValue] block (procedure) is used to store a Tag-Value pair in 
the TinyDB as shown in Figure 2.32.

Figure 2.42 Inserting a Tag-Value pair into a TinyDB

	 In this app, the user will pick a contact from the list of contacts on the phone using 
the PhoneNumberPicker component. The information of the contact picked is 
captured using the [when PhoneNumberPicker1.AfterPicking do] block, which 
is executed after the user picks a contact from the list. At this point, the name and the 
phone number are stored inside the ContactName and PhoneNumber properties of 
the PhoneNumberPicker. These will be added to the TinyDB for storage as shown in 
Figure 2.43. It also shows the Procedure BindList. This is discussed in the next section.

Figure 2.43 Inserting a contact from the PhoneNumberPicker into a TinyDB

	 To remove an entry from the TinyDB, use the [call TinyDB.ClearTag] procedure as 
shown in Figure 2.44.



Educational App Development Toolkit for Teachers and Learners60

Figure 2.44 Removing a Tag-Value pair from the TinyDB

7.	 Once you have picked a contact from the contacts list on your phone and saved the 
contact in the TinyDB, you will need to view the contacts you have saved in order to 
make a call. To do this, you will use the ListPicker component located in the User 
Interface drawer of the Palette. There is another component called ListView in the 
User Interface drawer which can hold a list. However, this list is displayed on the 
app screen permanently whereas the ListPicker only displays the list when it’s clicked. 
You can use the two components depending on the requirements of your app. For 
the purposes of this app, you will be using the ListPicker. More information about 
the ListView can be found at http://ai2.appinventor.mit.edu/reference/components/
userinterface.html#ListView

	 Typically, you will be searching for a contact by name — that is, the list will need to 
display the list of names that have been saved into the TinyDB. The Name is saved as 
the Tag of the Tag-Value pair. Therefore, you will need to load all the Tags into the 
ListPicker, which is renamed lstContacts. This is achieved using a custom procedure 
called BindList as shown in Figure 2.45.

Figure 2.45 Populating the ListPicker with the Tags in the TinyDB

8.	 Congratulations! You can now store a Tag-Value pair inside the persistent storage of the 
device. This will allow you to build significantly sophisticated apps.

In the Resources:

“app-phone-icon.png” by Double-J Design is used under a CC BY 4.0 International License 
from www.iconarchive.com/show/apple-festival-icons-by-double-j-design/app-phone-
icon.html. 

“picture-add-icon.png” is used under a public domain licence from www.iconarchive.com/
show/blue-bits-icons-by-icojam/picture-add-icon.html.

 “Address-Book-icon.png” by Double-J Design is used under a CC BY 4.0 International 
Licence from “picture-remove-icon.png” is used under a public domain licence from 
www.iconarchive.com/show/blue-bits-icons-by-icojam/picture-remove-icon.html.



Educational App Development Toolkit for Teachers and Learners 61

Activity 7: Camera (Say Cheese!)

COL_SayCheese 

Say Cheese!

This app uses the camera component to take a picture by 
clicking on the empty area of the picture frame. The picture 
is then displayed in a frame.

https://goo.gl/cMJrha

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners62

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use the Camera component to take a picture

•  Manipulate the Screen orientation of the app

•  Manipulate the Background colour of the Screen

•  Apply a Background Image to the Screen

•  Change the Background colour of a Button

•  Set the Background Image of a Button using blocks

•  AlignHorizontal: Center

•  AlignVertical: Center

•  BackgroundColor: None

•  BackgroundImage: imgPictureFrame.png

•  ScreenOrientation: Portrait

•  Text:

•  BackgroundColor: White

•  Width: 210 pixels

•  Height: 270 pixels



Educational App Development Toolkit for Teachers and Learners 63

Blocks

Walkthrough:

1.	 If you have reached this far, you will have a good grasp of app development on the AI2 
platform. In this app you will be using the Camera component located in the Media 
drawer of the Palette.

2.	 This is pretty straightforward app considering how much you have already learned from 
the ones you have already mastered. You can make it into a selfie app by manipulating 
the properties of the Camera component.	



Educational App Development Toolkit for Teachers and Learners64

Activity 8: Camcoder and VideoPlayer  
(Action Capture)

COL_ActionCapture

Action Capture

This app uses the Camcorder component to capture a video 
clip. Once the clip has been captured, it is played back us-
ing the VideoPlayer component.

https://goo.gl/liL46j

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners 65

Blocks

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use the Camcorder component to capture video

•  Use the VideoPlayer component to play back a video clip

•  AlignHorizontal: Center

•  AlignVertical: Center

•  ScreenOrientation: Landscape

•  Text: Action!

•  Width: Fill parent



Educational App Development Toolkit for Teachers and Learners66

Walkthrough:

1.	 This app uses the Camcoder and VideoPlayer components of the Media drawer in 
the Palette. It is similar to the app you built in Activity 7.

2.	 You can now see that AI2 allows you to use many of the built-in features and software 
of the Android device. To use other software and hardware on your device from within 
your app, you will need to use the non-visible  component from the 
Connectivity drawer of the Palette. More details on how to use the Activity Starter 
can be found at http://ai2.appinventor.mit.edu/reference/components/connectivity.
html#ActivityStarter 

	 You will be able to find lots more information, examples, code snippets, etc., at Pura 
Vida Apps http://puravidaapps.com. You can find answers to your questions at the 
MIT App Inventor Support Forum at https://groups.google.com/forum/#!forum/
mitappinventortest. 

	 You will now be able to do the Tutorials on your own. Make sure you do them 
sequentially and do them all. By the end of the Tutorials, you will be able to design 
and develop really cool Android apps for your teaching, learning and even commercial 
purposes.



Educational App Development Toolkit for Teachers and Learners 67

3. Tutorials

Tutorial 1: Pet the Kitty

COL_PetTheKitty

Pet The Kitty

This is a virtual pet application. An image of a cat appears 
in the centre of the screen and makes a purring sound 
when stroked with a finger. In addition, the phone vibrates 
to the purring sound.

https://goo.gl/E6GvQg

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners68

•  Icon: appicon.png

•  ScreenOrientation: Portrait

•  Width: Fill parent

•  Height: Fill parent

•  AlignHorizontal: Center

•  AlignVerticle: Center 

•  BackgroundImage: Noorse-boskat_wikipedia_1.png

•  Width: 300 pixels

•  Height: 300 pixels

•  Source: Meow.ogg

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use arrangement components to organise the screen

•  Design user experiences (UX) with images, sound, 
touch and vibration



Educational App Development Toolkit for Teachers and Learners 69

Blocks

In the Resources:

“Noorse-boskat wikipedia 1” by Wieke de Rijk, Netherlands at nl.wikipedia. Licensed under 
CC BY 2.5 via Wikimedia Commons: http://commons.wikimedia.org/wiki/File:Noorse-
boskat_wikipedia_1.JPG#mediaviewer/File:Noorse-boskat_wikipedia_1.JPG. 

“Meow.ogg” by Dcrosby at en.wikipedia [CC-BY-SA-3.0 (http://creativecommons.org/
licenses/by-sa/3.0/)], from Wikimedia Commons: http://upload.wikimedia.org/
wikipedia/commons/6/62/Meow.ogg. 



Educational App Development Toolkit for Teachers and Learners70

Tutorial 2: Swat the Mosquito

COL_SwatTheMosquito

Swat The Mosquito

This is an interactive game. The objective is to swat the 
mosquito with your finger. The mosquito flies randomly 
on the screen and the phone vibrates as the mosquito flies. 
When you swat the mosquito the game will say “Hit” and 
your score will increase by +1. You can reset the score to 
start a new game. 

https://goo.gl/EFy0Pg

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners 71

•  Icon: appicon.png
•  ScreenOrientation: Portrait

•  BackgroundImage: Brown_brick_wall.png
•  Width: Fill parent
•  Height: Fill parent

•  Picture: Mosquito.png
•  Width: 35 pixels
•  Height: 35 pixels

•  Width: Fill parent
•  AlignHorizontal: Right

•  FontBold: True
•  FontSize: 18.0
•  Text: Score : -

•  FontBold: True
•  FontSize: 18.0
•  Text: 0

•  BackgrounColor: Yellow
•  FontSize: 18.0
•  Shape: rounded
•  Text: RESET

•  TimeInterval: 700

•  Source: Sv-hit.ogg

Expected 
Learning 
Outcomes

Components  
& Attributes

By the end of this activity you should be able to:	

•  Use image sprites
•  Create and call procedures
•  Set up and use global variables
•  Work with the Clock component



Educational App Development Toolkit for Teachers and Learners72

Blocks

In the Resources:

“Mosquito.png” is based on the icon by www.freepik.com used under a CC BY 3.0 licence 
from www.flaticon.com.

“Brown brick wall” by Titus Tscharntke: www.public-domain-image.com/free-images/textures-
and-patterns/wall-texture/brick-wall-texture-pictures/brown-brick-wall-605x544.jpg  Licensed 
under Public Domain via Wikimedia Commons: http://commons.wikimedia.org/wiki/
File:Brown_brick_wall.jpg#mediaviewer/File:Brown_brick_wall.jpg.

 “Sv-hit.ogg” by M. Kihlstedt, N. Vion (The Shtooka Project) [CC BY 2.0 from (http://
creativecommons.org/licenses/by/2.0/fr/deed.en)], via Wikimedia Commons: http://
upload.wikimedia.org/wikipedia/commons/3/32/Sv-hit.ogg.



Educational App Development Toolkit for Teachers and Learners 73

Tutorial 3: Dice

COL_Dice

Dice

This app can be used as a replacement for a physical dice 
when playing board games such as Snakes and Ladders. 
Swing the phone to roll the dice. The app will speak out the 
number you have rolled.

https://goo.gl/s8GXMD

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners74

By the end of this tutorial you should be able to:

•  Use TextToSpeech in a real-world scenario

•  Use the AccelerometerSensor

•  Use the control statement If-Then-Else to make selections

•  Generate random numbers within a given range

•  Assign media through blocks

•  Pass parameters to procedures

•  Icon: appicon.png

•  ScreenOrientation: Portrait

•   Width: Fill parent

•  Height: Fill parent

•  AlignHorizontal: Center

•  AlignVerticle: Center 

•  Picture: D6_1.png

•  Width: Fill parent

•  AlignHorizontal: Center

•  BackgroundColor: Green

•  Text: Roll Dice

Expected 
Learning 
Outcomes

Components  
& Attributes



Educational App Development Toolkit for Teachers and Learners 75

Blocks



Educational App Development Toolkit for Teachers and Learners76

In the Resources:

“D6 1” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was  
created with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons:  
http://commons.wikimedia.org/wiki/File:D6_1.svg#mediaviewer/File:D6_1.svg. 

“D6 2” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was  
created with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons: 
 http://commons.wikimedia.org/wiki/File:D6_2.svg#mediaviewer/File:D6_2.svg.

“D6 3” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was  
created with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons:  
http://commons.wikimedia.org/wiki/File:D6_3.svg#mediaviewer/File:D6_3.svg.

“D6 4” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was c 
reated with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons:  
http://commons.wikimedia.org/wiki/File:D6_4.svg#mediaviewer/File:D6_4.svg.

“D6 5” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was  
created with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons:  
http://commons.wikimedia.org/wiki/File:D6_5.svg#mediaviewer/File:D6_5.svg.

“D6 6” by Christophe Dang Ngoc Chan (cdang). Own work. This vector image was  
created with Inkscape. Licensed under CC BY-SA 3.0 via Wikimedia Commons:  
http://commons.wikimedia.org/wiki/File:D6_6.svg#mediaviewer/File:D6_6.svg.



Educational App Development Toolkit for Teachers and Learners 77

Tutorial 4: Virtual Chemistry Experiments

COL_VirtualChemistryExperiments

Virtual Chemistry Experiments

This app uses the Canvas and ImageSprite components to 
demonstrate a virtual chemistry experiment. The user can 
drag and drop six different elements from the shelf into the 
beaker of water to see how they react.  

https://goo.gl/e91OBV

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot

By the end of this tutorial you should be able to:

•  Use global variables to hold components
•  Pass parameters into procedures
•  Reset X and Y coordinates of components using blocks

Expected 
Learning 
Outcomes



Educational App Development Toolkit for Teachers and Learners78

•  Icon: appicon.png
•  ScreenOrientation: Landscape

•  Width: Fill parent
•  Height: Fill parent

•  Image: imgShelf.jpg

•  Image: imgPotasium.png

•  Image: imgLithium.png

•  Image: imgCopper.png

•  Image: imgAluminium.png

•  Image: imgSodium.png

•  Image: imgIron.png

•  Image: imgBeaker.png

•  Width: 10 pixels
•  Height: 10 pixels

•  BackgroundColor: Yellow
•  FontBold: True
•  Text: RESETBackgroundColor: Yellow
•  FontBold: True
•  Text: RESET

Components  
& Attributes



Educational App Development Toolkit for Teachers and Learners 79

Blocks



Educational App Development Toolkit for Teachers and Learners80



Educational App Development Toolkit for Teachers and Learners 81



Educational App Development Toolkit for Teachers and Learners82



Educational App Development Toolkit for Teachers and Learners 83

In the Resources:

“imgNaReaction.jpg” by Naatriumi_reaktsioon_veega_purustab_klaasist_anuma.jpg: 
Tavoromann. Derivative work: Tony Mach - This file was derived from Naatriumi 
reaktsioon veega purustab klaasist anuma.jpg. Licensed under CC BY-SA 3.0 via 
Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Sodium_and_Water.
png#/media/File:Sodium_and_Water.png. 

“imgKReaction.jpg” by Tavoromann. Own work. Licensed under CC BY-SA 3.0 via 
Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Kaalumi_reaktsioon_
veega.jpg#/media/File:Kaalumi_reaktsioon_veega.jpg.



Educational App Development Toolkit for Teachers and Learners84

Tutorial 5: Scan and Learn

COL_ScanAndLearn

Scan and Learn

This app uses the BarcodeScanner and ActivityStarter com-
ponents. You can press and hold to scan a barcode or QR 
code. The activity starter will open the content URL using 
the appropriate applications installed on your device.

https://goo.gl/lTOVxt 

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

Screenshot



Educational App Development Toolkit for Teachers and Learners 85

Blocks

Components  
& Attributes

By the end of this tutorial you should be able to:

•  Use the BarcodeScanner component
•  Invoke external apps using the ActivityStarter component
•  Rename components

Expected 
Learning 
Outcomes

•  AlignHorizontal: Center

•  AlignVertical: Center

•  Icon: appicon.png

•  Name: btnScan

•  Image: imgInformation.png



Educational App Development Toolkit for Teachers and Learners86

In the Resources:

“Info Simple” by Amada44. Own work. Licensed under Public Domain via Wikimedia 
Commons: https://commons.wikimedia.org/wiki/File:Info_Simple.svg#/media/
File:Info_Simple.svg. 

Useful Links

https://www.the-qrcode-generator.com.

http://www.classtools.net/QR/create.php.



Educational App Development Toolkit for Teachers and Learners 87

Tutorial 6: Voice Note
This tutorial demonstrates the concept of creating a storyboard prior to the development 
of an app. The idea is to design the screens one by one, following the storyboard below. 
The blocks are provided only as a reference. You are advised not to refer to the tutorial, 
for the sake of the practical hands-on work and learning. The blocks for the app should be 
assembled following the logic of the storyboard. Ideally, the trainer/participants would be 
creating the app in real-time and only using the storyboard as a guide. The storyboard will 
help you to structure the logical flow of work and preparation of Blocks.

1 2 3

4 5 6

7 8 9

Storyboard



Educational App Development Toolkit for Teachers and Learners88

COL_VoiceNote

Voice Note

This voice recorder app allows students to take audio notes 
while they study and revise. The app uses the SoundRecord-
er, Player and ListPicker components to play saved notes 
from a list. The notes can be saved, played back or deleted 
from the TinyDB storage.

https://goo.gl/6ByCkp 

Project name 
(AppName)

App Name 
(Title)

App description 
(AboutScreen)	

Resources

By the end of this tutorial you should be able to:

•  Create a storyboard for an app
•  Design an app based on a storyboard

Expected 
Learning 
Outcomes



Educational App Development Toolkit for Teachers and Learners 89

Components  
& Attributes



Educational App Development Toolkit for Teachers and Learners90

•  Width: 10 pixels

•  Image: imgPause.png

•  Image: imgStop.png

 
•  Height: 20 pixels

•  AlignHorizontal: Center

•  Width: Fill parent

•  Image: imgSave.png

•  Width: 10 pixels

•  Image: imgTrash.png

 

 

•  NotifierLength: Long 

•  AlignHorizontal: Left

•  AlignVertical: Top

•  Icon: appicon.png

•  Width: Fill parent

•  AlignHorizontal: Center

•  FontBold: True

•  FontSize: 18.0

•  Text: VOICE NOTE

•  TextColor: Blue

•  AlignHorizontal: Left

•  AlignVertical: Center

•  Width: Fill parent

•  Height: Fill parent

•  AlignHorizontal: Center

•  Width: Fill parent

•  Image: imgRecord.png

•  Title: RECORDINGS

•  Image: imgList.png

•  Image: imgPlay.png

Components  
& Attributes



Educational App Development Toolkit for Teachers and Learners 91

Blocks



Educational App Development Toolkit for Teachers and Learners92



Educational App Development Toolkit for Teachers and Learners 93



Educational App Development Toolkit for Teachers and Learners94



Educational App Development Toolkit for Teachers and Learners 95

In the Resources:

“imgList.png” is based on the icon at www.freepik.com, used under a CC BY 3.0 licence 
from www.flaticon.com.

“imgPause.png” is based on the icon at www.google.com, used under a CC BY 3.0 licence 
from www.flaticon.com.

“imgPlay.png” is based on the icon at http://appzgear.com, used under a CC BY 3.0 licence 
from www.flaticon.com.

“imgStop.png” is based on the icon at www.icomoon.io used under a CC BY 3.0 licence 
from www.flaticon.com.

“imgRecord.png” is based on the icon at www.alessioatzeni.com, used under a CC BY 3.0 
licence from www.flaticon.com.

“imgSave.png” is based on the icon at www.freepik.com, used under a CC BY 3.0 licence 
from www.flaticon.com.

“imgTrash.png” is based on the icon at www.freepik.com, used under a CC BY 3.0 licence 
from www.flaticon.com.



Educational App Development Toolkit for Teachers and Learners96

4. Packaging and Distribution1

You can share your app in an executable form (.apk) that can be installed on a device, or 
in source code form (.aia) that can be loaded into App Inventor and remixed. You can also 
distribute your app on the Google Play Store.

4.1	S haring your app so that others can remix it 		
	 (.aia file)
Make sure you are viewing the list of all of your projects (if you are not, choose Project > 
My Projects). Select the project you wish to share by checking the box next to it. Choose 
Project > Export selected project (.aia) to my computer to export the source code 
(blocks) for your project (Figure 4.1). 

The source code is downloaded in an .aia file.

Figure 4.1 Exporting a project as an .aia file

If you send it to a friend, they can open it with Project > Import project (.aia) from my 
computer as shown in Figure 4.2.

1.	Packaging and 
Distribution is 
adapted from 
http://appinventor.
mit.edu/explore/
ai2/share.html 
under a Creative 
Commons 
Attribution-
ShareAlike 3.0  
Unported Licence.



Educational App Development Toolkit for Teachers and Learners 97

Figure 4.2 Importing a project into AI2

4.2	S haring your app for others to install on their 		
	 phone/tablet (.apk file)
Package the app (.apk file) by going to the Build menu on the App Inventor toolbar as 
shown in Figure 4.3.

Figure 4.3 Packaging an app as a .apk file

Select App (save .apk to my computer). A pop up box should alert you that your 
download has begun (Figure 4.4). 

NOTE: The other option (provide a QR code for an .apk file) produces a scannable QR 
code that will download the app and make it available for two hours. You can share this code 
with others, but they have to use it within two hours of your generating it.



Educational App Development Toolkit for Teachers and Learners98

Figure 4.4 Build progress of the .apk file

Once the build completes, you can email the app (.apk file) to your friends who can install 
it by opening the email from their Android phones. If you want to distribute it more widely, 
you can upload it to a website that both you and your friends can access. You can also 
distribute your app via the Google Play Store.

NOTES: 

1.	 Anyone installing your app (which is an .apk file) will need to change the setting on 
their phone to allow the installation of non-market applications.

2.	 To find this setting on versions of Android prior to 4.0, go to Settings > Applications 
and then check the box next to Unknown Sources. For devices running Android 4.0 
or above, go to System settings > Security or Settings > Security & Screen lock, 
check the box next to Unknown source and confirm your choice.

3.	 The source code (.aia) files are not executable Android programs. Only .apk files are 
executable. The source code is also not Java SDK code — it can only be loaded into App 
Inventor.



Educational App Development Toolkit for Teachers and Learners 99

5. Publishing Apps on Google Play1

5.1	 The Developer Console
Upload apps, build your product pages, configure prices and distribution, and publish. You 
can manage all phases of publishing on Google Play through the Developer Console from 
any Web browser (Figure 5.1). Once you’ve registered and received verification by email, 
you can sign in to your Google Play Developer Console.

Figure 5.1 Google Play Developer Console

5.1.1	 All Applications

Start in All Applications (Figure 5.2), which gives you a quick overview of your apps and 
lets you jump to stats, reviews and product details or upload a new app.

1	 Publishing Apps on 
Google Play is adapted 
from http://developer.
android.com/distribute/
googleplay/developer-
console.html under 
a Creative Commons 
Attribution 2.5 Licence.



Educational App Development Toolkit for Teachers and Learners100

Figure 5.2 All applications on the Google Play Developer Console

5.1.2	 Account Details

Add basic developer profile information about yourself or your company to the Account 
details page (Figure 5.3). This identifies you to Google Play and your customers. You can 
go back at any time to edit the information and change your settings.

Your developer profile contains:

•	 Developer name: displayed on your store listing page and elsewhere on Google Play.

•	 Contact information: used by Google only, it isn't seen by your customers.

•	 Website URL: displayed on your store listing page.

On the Account details page you can also add restricted access for marketers and other 
teams, register for a merchant account, or set up test accounts for Google Play licensing.



Educational App Development Toolkit for Teachers and Learners 101

Figure 5.3 Google Developer account details

5.1.3	 Linking Your Merchant Account

If you want to sell apps or in-app products, link your Google Wallet Merchant Account to 
your developer profile. Google Play uses the linked merchant account for financial and tax 
identification, as well as for monthly payouts from sales.

5.1.4	 Multiple User Accounts

Set up user accounts for other team members to access different parts of your Developer 
Console as shown in Figure 5.4.



Educational App Development Toolkit for Teachers and Learners102

Figure 5.4 Multiple user account in the Developer Console

The first account registered is the account owner, with full access to all parts of the console. 
The owner can add user accounts and manage console access. For example, an owner can 
grant users access to publishing and app configuration, but not to financial reports.

5.1.5	S tore Listing Details

Use the Developer Console to set up a Store Listing page (Figure 5.5). This is the home 
for your app in Google Play. It’s the page users see on their mobile phones or on the Web to 
learn about your app and download it.

Upload custom brand assets, screenshots and videos to highlight what’s great about your 
app; provide a localised description; add notes about the latest version, and more. You can 
update your store listing at any time.



Educational App Development Toolkit for Teachers and Learners 103

Figure 5.5 Google Play Store listing details



Educational App Development Toolkit for Teachers and Learners104

5.1.6	U pload and Instantly Publish

From the Developer Console you can quickly upload and publish a release-ready Android 
application package file. The app is a draft until you publish it, at which time Google Play 
makes your store listing page and app available to users. Your app appears in the store 
listings within hours, not weeks.

Once your app is published, you can update it — change your prices, configuration, and 
distribution options, for example — as often as you want, whenever you want without 
needing to update your app binary.

As you add features or address code issues, you can publish an updated binary at any time. 
The new version is available almost immediately and existing customers are notified that an 
update is ready for download. Users can also accept automatic updates to your app so that 
your updates are delivered and installed as soon as you publish them. You can unpublish 
your apps at any time.

5.1.7	 Alpha- and Beta- Testing

It’s always valuable to get real-world feedback from users, especially before a launch. Google 
Play makes it easy to distribute pre-release versions of your app to alpha and beta test groups 
anywhere in the world.

In the APK section of your Google Play Developer Console you’ll find Alpha Testing and 
Beta Testing tabs (Figure 5.6). Here you can upload versions of your apps’ .apk files and 
define a list of testers as a Google Group or Google+ Community. You will receive a URL 
to forward to your testers and they can then opt in to the testing program.

Figure 5.6 Alpha- and beta-testing your app



Educational App Development Toolkit for Teachers and Learners 105

When your testers download the app from its product page, Google Play will deliver the 
alpha or beta version to them as appropriate. Incidentally, if a user happens to be opted-in to 
both your testing groups, Google Play will always deliver the alpha test version to them, not 
the beta.

Note that users cannot provide feedback and reviews on alpha and beta versions of your 
apps. To gather feedback, you could use the Google Group or Google+ Community, or set 
up an email address or your own website.

You can use these testing programs to optimise your apps, help with rollout to new markets 
and start building your community. 

5.1.8	S taged Rollouts

You can stage the rollout of your apps using the Production tab in the APK section of your 
Google Play Developer Console. Here you can define the percentage of users who’ll be 
able to download your app.

Staging your rollout will help limit the impact of unexpected bugs or server load and enable 
you to gauge user feedback with an unbiased sample of users. Users can rate and review your 
apps during staged rollouts, so if you’re hesitant, start your rollout with a small percentage 
of users. Be sure to watch for and respond to any negative reviews.

Note that rollbacks aren’t supported due to the app versioning requirements of the Android 
platform. If you need to roll back, consider launching a previous APK (app package) with 
a new version number. However, this practice should be used only as a last resort, as users 
will lose access to new features and your old app may not be forward-compatible with your 
server changes or data formats, so be sure to run alpha and beta tests of any updates.

5.2	 Multiple APK Support
In most cases, a single APK is all you need, and it’s usually the easiest way to manage and 
maintain the app. However, if you need to deliver a different APK to different devices, 
Google Play provides a way to do that.

Multiple APK support lets you create multiple app packages that use the same package name 
but differ in their OpenGL texture compression formats, screen-size support or Android 
platform versions supported. You can simply upload all the APKs under a single product 
listing and Google Play selects the best ones to deliver to users, based on the characteristics 
of their devices.

You can also upload up to two secondary downloads for each published APK, including 
multiple APKs, using the APK Expansion Files option. Each expansion file can be up to 
2GB and contain any type of code or assets. Google Play hosts them for free and handles the 
download of the files as part of the normal app installation.



Educational App Development Toolkit for Teachers and Learners106

5.3	S elling and Pricing Your Products
There are tools to set prices for your apps and in-app products. Your app can be free to 
download or priced, with payment required before download (Figure 5.7).

Figure 5.7 Selling and pricing products on Google Play

If you publish your app as free, it must remain free for the life of the app. Free apps can be 
downloaded by all users in Google Play. If you publish it as priced, you can change it later 
to free. Priced apps can be purchased and downloaded only by users who have registered a 
form of payment in Google Play.

See Supported locations for distributing applications for a list of countries where you 
can distribute or sell your apps.

You can also offer in-app products and subscriptions, whether the app is free or priced. Set 
prices separately for priced apps, in-app products and subscriptions.

When users browse your app product pages or initiate a purchase, Google Play shows them 
the price they’ll be charged in their local currency.

For each product, you initially set a default price in your own currency. If you do no more, 
Google Play will automatically set local prices once a month based on the US dollar price for 
your app.

However, Google Play gives you complete control over how you price your products in each 
country. To start, you can set fixed local prices manually from the default price, using the 
Auto-convert prices now feature. You can then review these prices and set new ones for 
any countries you wish — the price for each country is independent, so you can adjust one 
price without affecting the others. For most countries, the price you set includes taxes.



Educational App Development Toolkit for Teachers and Learners 107

5.4	I n-App Products
You can sell in-app products and subscriptions using Google Play In-app Billing. In-app 
products are one-time purchases, while subscriptions are recurring charges on a monthly or 
annual basis.

In the In-app Products section for a specific published or draft APK you:

•	 create product lists for in-app products and subscriptions,

•	 set prices, and

•	 publish the products with the app or withdraw obsolete products.

For details on how to implement In-app Billing, see the In-app Billing developer 
documentation at https://developer.android.com/google/play/billing/index.html. You make 
use of in-app products in the Premium, Freemium and Subscription monetisation models.

5.4.1	 Distribution Controls

Manage the countries and territories that will distribute your apps. For some countries, you 
can choose which carriers you want to target. You can also see the list of devices your app is 
available for, based on any distribution rules declared in its manifest file.

5.4.2	Geographic Targeting

You can use controls in the Google Play Developer Console to easily manage the geographic 
distribution of your apps, without any changes in your application binary. You can specify 
which countries and territories you want to distribute to, and even which carriers to use (for 
some countries). When users visit the store, Google Play makes sure that they are in one of 
your targeted countries before downloading your app. You can change your country and 
carrier targeting at any time just by saving changes in the Google Play Developer Console. 
To help you market to users around the world, you can localise your store listing, including 
app details and description, promotional graphics, screenshots and more.

5.4.3	Capabilities Targeting

Google Play also lets you control distribution according to device features or capabilities 
that your app depends on. There are several types of dependencies that the app can define in 
its manifest, such as hardware features, OpenGL texture compression formats, libraries and 
Android platform versions, among others (Figure 5.8).



Educational App Development Toolkit for Teachers and Learners108

Figure 5.8 Device compatibility

When you upload your app, Google Play reads the dependencies and sets up any necessary 
distribution rules. For technical information about declaring dependencies, read Filters on 
Google Play at http://developer.android.com/google/play/filters.html.

For pinpoint control over distribution, Google Play lets you see all of the devices on which 
your app is available based on its dependencies (if any). From the Google Play Developer 
Console, you can list the supported devices and even exclude specific devices, if necessary.



Educational App Development Toolkit for Teachers and Learners 109

5.5	U ser Reviews and Crash Reports
The Ratings & Reviews section gives you access to user reviews for a specific app as shown 
in Figure 5.9. You can filter reviews in a number of ways to locate issues more easily and 
support your customers more effectively.

Figure 5.9 User reviews and ratings of your app

Google Play makes it easy for users to submit reviews of your app for the benefit of other 
users. The reviews give you usability feedback, support requests and details about important 
functionality issues directly from your customers.

Use crash reports for debugging and improving your app. You can see crash reports with 
stack trace and other data submitted automatically from Android devices.



Educational App Development Toolkit for Teachers and Learners110

5.5.1 App Statistics

Figure 5.10 Detailed statistics about your app

The app statistics page shows you a variety of statistics about a specific app’s installation 
performance.



Educational App Development Toolkit for Teachers and Learners 111

6 Workshop Design and Evaluation

6.1 Workshop Training Schedule
The following is the workshop training schedule to be used when conducting the training 
workshop. Each session corresponds to the activities and tutorials in this toolkit. 

Workshop Training Schedule

Title 	 Workshop on Educational App Development for 		
	 Teachers and Learners

Dates	 dd to dd month year

Venue	

Trainer

Prerequisites:	 > Each participant must have a personal Google/Gmail account 

	 > Android smartphone or tablet ( If you not have a smartphone,  
	    you can work on Emulator using a PC)

TIME	Gett ing Started with Android App Development 
	 Day 1 (dd/mm/yyyy)

8.30 – 8.45am	R egistration

9.15 – 9.30am	 Icebreaking

9.30 – 9.45am	O bjective and expected outcome of the workshop 
	 Learning outcomes of Day 1

9.45 – 10.00am	 Introduction to Visual Programming and MIT App Inventor

10.00 – 10.15am	 Tea break

10.15 – 10.30am	 Creating an App Inventor account

10.30 – 11.30am 	 Device setup for App development and debugging

11.30 – 11.45am	 Introduction to the development environment (designer and  
	 blocks editor)

11.45 – 12.15pm	 Introduction to available modules for App development

12.15 – 1.00pm	 Using basic components: 
	 1.	 TextToSpeech App: Loud Mouth 
	 2.	 AccelorometerSensor App: Shivers 
	 3.	 SpeechRecognizer App: Speak to Me



Educational App Development Toolkit for Teachers and Learners112

1.00 – 2.00pm	 Lunch break

2.00 – 3.00pm	 Using basic components: 
	 4.   Canvas App: Scribble 
	 5.   Ball App: Ball Bounce 
	 6.   Orientation Sensor and Clock App: Move the Ball 
	 7.   Camera App: Say Cheese! 
	 8.   Camcoder and VideoPlayer App: Action Capture

3.00 – 3.15pm	 Tea break

3.15 – 3.45pm	 Q&A Session

3.45 – 4.00pm	R ecap and wrap-up

TIME	Inte rmediate Concepts 
	 Day 2 (dd/mm/yyyy)

9.00 – 9.15am	 Learning outcomes of Day 2

9.15 – 10.00am	 Tutorial 1: Pet the Kitty

10.00 – 10.15am	 Tea break

10.15 – 11.15am	 Tutorial 2: Crystal Ball

11.15 – 12.30pm	 Tutorial 3: Swat the Mosquito

12.30 – 1.00pm	 Q&A session

1.00 – 2.00pm	 Lunch break

2.00 – 3.00pm	 Tutorial 4: Virtual Chemistry Experiments

3.00 – 3.15pm	 Tea break

3.15 – 3.45pm	 Tutorial 4: Virtual Chemistry Experiments (contd…)

3.45 – 4.00pm	R ecap and wrap-up



Educational App Development Toolkit for Teachers and Learners 113

TIME	 Advanced Concepts 
	 Day 3 (dd/mm/yyyy)

9.00 – 9.15am	 Learning outcomes of Day 3

9.15 – 10.00am	 Using advanced concepts: 
	 1.	 Built-in Blocks 
	 2.	 Functions 
	 3.	 Variables 
	 4.	 Arithmetic and Boolean Algebra 
	 5.	 Control Structures 
	 6.	E xception Handling

10.00 – 10.15am	 Tea break

10.15 – 11.15am	 Using advanced concepts: 
	 7.	 Starting Activities 
	 8.	 Databases and Storage 
	 9.	 Connectivity 
	 10.	Block Management

11.15 – 12.45pm	 Tutorial 5: Scan and Learn

12.45 – 1.00pm	P ackaging and distribution

1.00 – 2.00pm	 Lunch Break

2.00 – 3.00pm	 Storyboards and prototypes 
	 Tutorial 6: Voice Note

3.00 – 3.15pm	 Tea break

3.15 – 3.45pm 	P ublishing Apps on Google Play

3.45 – 4.00pm	R eflections and feedback



Educational App Development Toolkit for Teachers and Learners114

6.2 Workshop Evaluation
The following evaluation form can be used to gather qualitative and quantitative feedback 
on multiple aspects of the workshop. The evaluation form is to be administered as the last 
session of the workshop training schedule (see section 6.1). The form has been validated 
and field tested. It can be administered in hard copy or online format depending on the 
circumstances.

Educational App Development  
for Teachers and Learners

Workshop Evaluation Form

As a participant, you are invited to evaluate this workshop. Please use this form to provide 
your feedback. Your personal information will be kept confidential at all times. However, 
your feedback might be disseminated as research findings.

Personal Information 

Name	

Age	 ❏  10–15 years 
	 ❏  16–20 years 
	 ❏  21–30 years 
	 ❏  31–40 years 
	 ❏  41–60 years 
	 ❏  Above 60 years

Gender	 ❏  Male  
	 ❏  Female 

Occupation	

Institution/Organisation	

Work address	

	

Email address	



Educational App Development Toolkit for Teachers and Learners 115

Background Information 

Are you a teacher or a student?	 ❏  Teacher 
(choose only one)	 ❏  Student 

What’s your IT background?	 ❏  Teacher/Student (IT related subjects) 
(choose only one)	 ❏  Teacher/Student (non-IT related subjects) 

What’s your area of	  
specialisation? e.g. Education, 	  
Social Science, Mathematics, 	  
Computer Science etc.	  

Do you have any prior experience 	 ❏  No 
in computer programming?	 ❏  Yes 
	 If yes, what’s your level of expertise in computer 			 
	 programming?

 	 ❏  I have learned programming in school, university, etc. 
	 ❏  I am a programmer by profession 
	 ❏  I’m not a professional programmer but I write 
	     programs for my teaching, learning or research 
	 ❏  I write programs as a hobby 

Do you have any prior 	 ❏  No 
experience in mobile 	 ❏  Yes 
application development?	 If yes, please describe your experience e.g. operating system 		
	 (iOS, Android, Windows, other), programming language 		
	 used etc.	  
	  
	  
	  
	

Have you worked with Visual	 ❏  No 
Programming before this 	  
workshop?	 If yes, please describe your experience e.g. platform, 			
	 programming language etc.	  
	  
	  
	  
	

  



Educational App Development Toolkit for Teachers and Learners116

Have you used MIT App Inventor 	 ❏  No 
before this workshop?	 ❏  Yes

	 If yes, please describe your experience e.g. what type of 
	 applications you developed, did you publish in Google Play 		
	 etc. 
	  
	  
	  
	  
	

Feedback on Workshop
The outcomes of the workshop are: 

•   Familiarise yourself with the AI2 platform

•   Use the Designer and Blocks Editor

•   Implement various components in applications

•   Design rich user experiences (UX)

•   Practise packaging and distribution of applications

What is your overall rating 	 ❏   Poor 
of this workshop?	 ❏   2 
	 ❏   3 
	 ❏   4 
	 ❏   Excellent 

How did you feel about the 	 ❏   Too short 
length of the workshop?	 ❏   Just right 
	 ❏   Too long 

How did you feel about the 	 ❏   Too slow 
pacing of the workshop?	 ❏   Just right 
	 ❏   Too fast



Educational App Development Toolkit for Teachers and Learners 117

Please indicate your agreement or disagreement with the following statements using a scale of 1 
to 5 where 1 = strongly disagree and 5 = strongly agree. Tick the appropriate box.

		  1         2         3        4         5 	  

The objectives of the workshop have been achieved.	 ❏       ❏       ❏       ❏       ❏ 			 
	

Your personal objectives for attending the workshop 	 ❏       ❏       ❏       ❏       ❏ 	  
have been achieved. 
					  

Your understanding of Android app development has 	 ❏       ❏       ❏       ❏       ❏ 	  
improved or increased as a result of the workshop. 
					  

Your skills in Android app development have 	 ❏       ❏       ❏       ❏       ❏ 	  
improved or increased as a result of the workshop. 
					  

You would recommend to others that they attend 	 ❏       ❏       ❏       ❏       ❏ 	  
this workshop in the future. 
					  

The material provided was necessary for the 	 ❏       ❏       ❏       ❏       ❏ 	  
workshop. 
					  

There was good balance between lecture sessions,	 ❏       ❏       ❏       ❏       ❏ 	   
activities, tutorials and discussions.	  
				 

The workshop was logically sequenced from basic 	 ❏       ❏       ❏       ❏       ❏ 	  
to intermediate concepts. 
					  

The practical activities and tutorials were effective 	 ❏       ❏       ❏       ❏       ❏ 	  
in teaching the concepts. 
					  

The amount of time given for the activities and 	 ❏       ❏       ❏       ❏       ❏ 	  
tutorials was sufficient. 
				 

The amount of time given for the follow-up 	 ❏       ❏       ❏       ❏       ❏ 	  
discussions was sufficient. 
					  

The handouts given were useful and of good quality.	 ❏       ❏       ❏       ❏       ❏ 	  

strongly 
disagree

strongly  
agree



Educational App Development Toolkit for Teachers and Learners118

Are there any other comments 	  
or feedback that you would 	  
like to share? 	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	



Educational App Development Toolkit for Teachers and Learners 119

7 Useful Resources

Icons
www.iconarchive.com
www.flaticon.com

Make Icons
http://makeappicon.com/#

Backgrounds
http://subtlepatterns.com
http://colorcombos.com

Logo designers
www.designmantic.com
www.graphicsprings.com

QR Code Generator
http://goqr.me 

Connecting to MySQL
http://puravidaapps.com/mysql.php

Activity Starter details
http://beta.appinventor.mit.edu/learn/reference/other/activitystarter.html
http://developer.android.com/distribute/googleplay/promote/linking html#OpeningPublisher

Embedding HTML
http://puravidaapps.com/javascript.php

Eclipse developer tutorial
www.vogella.com/tutorials/Android/article.html

Publishing
http://beta.appinventor.mit.edu/learn/reference/other/appstoplay.html

Screen Size
http://developer.android.com/guide/practices/screens_support.html

File downloads
http://puravidaapps.com/filedownload.php



Educational App Development Toolkit for Teachers and Learners120

Image Credits
 
All images from the http://appinventor.mit.edu are licensed by CC BY-SA.

Figure 1.1: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/DesignTab.png

Figure 1.2: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/BlocksTab.png

Figure 1.3: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/WifiA.png

Figure 1.4: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/ai2storecompanionQR.
png

Figure 1.5: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/wifi/connectSnapshot2.
png

Figure 1.6: http://appinventor.mit.edu/explore/sites/explore.appinventor.mit.edu/files/Six%20
Character%20Code.png

Figure 1.7: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/Emulator.png

Figure 1.8: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/ai_starter.png 

Figure 1.9: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/successful_ai_
starter_1.png 

Figure 1.10: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/
connectEmulator.png

Figure 1.11: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/
connectingemulator.png

Figure 1.12: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/middle.png

Figure 1.13: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/USB.png

Figure 1.14: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/
ai2storecompanionQR.png

Figure 1.15: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/ai_starter.png

Figure 1.16: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/emulator/successful_
ai_starter_1.png 



Educational App Development Toolkit for Teachers and Learners 121

Figure 2.1: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/DesignTab.png

Figure 2.2: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/BlocksTab.png 

Figures 2.3–2.45: Ishan Sudeera Abeywardena, PhD

Figure 4.1: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/sharing_aias.png

Figure 4.2: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/sharing_aias2.png

Figure 4.3: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/Build_Dropdown.jpg 

Figure 4.4: http://appinventor.mit.edu/explore/sites/all/files/SetupAI2/Build_Popup.jpg

Figure 5.1: http://developer.android.com/images/gp-devconsole-home.png

Figure 5.2: http://developer.android.com/images/gp-dc-home.png 

Figure 5.3: http://developer.android.com/images/gp-dc-profile.png

Figure 5.4: http://developer.android.com/images/gp-dc-invite.png

Figure 5.5: http://developer.android.com/images/gp-dc-details.png

Figure 5.6: http://developer.android.com/images/gp-dc-ab.png

Figure 5.7: http://developer.android.com/images/gp-buyer-currency.png

Figure 5.8: http://developer.android.com/images/gp-supported-dev-requirements.png

Figure 5.9: http://developer.android.com/images/gp-dc-reviews.png

Figure 5.10: http://developer.android.com/images/gp-dc-stats.png



4710 Kingsway, Suite 2500 
Burnaby, BC V5H 4M2 
Canada 
 
Tel: +1 604 775 8200 
Fax: +1 604 775 8210 
E-mail: info@col.org 
Web: www.col.org

November 2015 


